博碩士論文 103683002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.145.91.121
姓名 賴彥霖(Ian-Lin Lai)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 彗星67P 上的灰塵噴流與質量傳輸
(Dust Jets and Mass Transport of Comet 67P/Churyumov–Gerasimenko)
相關論文
★ 日冕拋射物質現象在太陽第23週期之統計研究★ 土星環粒子隨時間變化之表面溫度模擬
★ RHESSI觀測M型太陽閃焰的動態結構分析★ 太陽活動寧靜期日冕層影像與解析磁場模型之影像套疊與應用
★ 土衛八Iapetus的外球層模型★ 月球表面反射太陽風質子之粒子模擬
★ 土衛六-泰坦的大氣層密度和溫度的三維分佈★ 日冕物質拋射速度與緯度和太陽活動週期的關係
★ 隨季節變化之灶神星冰極模擬★ 藉由卡西尼太空船MIMI/LEMMS觀測資料分析土星高能電漿入射來源之統計
★ 土星環鄰近地區之帶電塵埃粒子動力學★ 直接模擬蒙地卡羅法於彗星之噴氣和塵埃噴流之應用
★ 克普勒任務觀測G型星超級閃焰的資料分析★ The Measurements of the Gas Density Distributions and Composition in the Water Plumes of Enceladus by the INMS Instrument on Cassini
★ 木星環系統帶電粒子動力學分析與 全球碰撞分布地圖--為JUNO任務預測★ 土衛六泰坦大氣的甲烷在土星系統的分佈
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 羅賽塔太空船在彗星67P上近距離觀測到許多有趣的現象,太陽加熱不規則彗核上的揮發物昇華並產生氣體噴流,夾帶著灰塵粒子形成一束束的灰塵噴流,太空船上搭載的OSIRIS光學照相機觀測到許多灰塵噴流從彗核表面射出,因此可以從影像定位出些噴流在彗星上的位置。我們找出了這些灰塵噴流的來源會隨著太陽照射的位置而改變並且與附近地貌有關。此外,我們也研究灰塵粒子隨著彗星噴氣的牽引力而移動,有些會再度掉回到彗星表面,其中主要是由南半球向著北半球方向的傳輸。
摘要(英) Rosetta spacecraft observations at close distance have shown many interesting phenomenon on Comet 67P/ Churyumov–Gerasimenko. Gas outflow could drag dust grains as indicated by the collimated dust jet structures on the sunlit side because of the diurnal thermal cycle and the irregular shape of the nucleus. The OSIRIS imaging observations show that the dust coma was filled by numerous dust jets emanating from the nucleus surface. This means that they can be used to trace the active regions as the comet moved around the perihelion. In this work, we show the source regions of dust jets would move in consonance with the sunlit belt. Therefore, a number of source regions characterized by repeated jet activity could be identified which might be the result of local topographical variations or chemical heterogeneities. With a time variability model of the global gas production rate, we also investigate the transport of dust grains calculated by dust particle dynamics under the influences of the rotating nucleus and gas dragging force. From these considerations, we find a redeposition of the ejected dust grains from the southern hemisphere to the northern hemisphere during the southern summer season.
關鍵字(中) ★ 彗星
★ 羅賽塔
★ 直接模擬蒙地卡羅法
關鍵字(英) ★ comets
★ Rosetta
★ DSMC
論文目次 摘 要.............................................................i
Abstract..............................................................ii
誌 謝.............................................................iii
Contents..............................................................iv
List of Figures.......................................................vii
List of Tables........................................................xi
Symbols...............................................................xii
Chapter 1 Introduction................................................1
1.2 Origins of Comets.................................................4
1.3 Cometary Dust Jets................................................5
Chapter 2 Rosetta Mission and Comet 67P/Churyumov–Gerasimenko.......8
2.1 Rosetta Mission...................................................8
2.2 Comet 67P.........................................................10
2.2.1 Orbital Elements..............................................10
2.2.2 Physical Parameters and the Nucleus...........................11
2.2.3 Gas Production Rate...........................................14
2.2.4 Seasonal Dust Transport.......................................15
2.2.5 Recurring Dust Jets...........................................18
Chapter 3 Modeling of the Dust and Gas Coma.........................19
3.1 Sublimation Process...............................................20
3.1.1 Thermal Model.................................................20
3.1.2 Thermal Inertia...............................................22
3.2 The DSMC Method...................................................23
3.2.1 Applications of DSMC on Comets................................23
3.2.2 Knudsen Number................................................24
3.2.3 General DSMC Algorithm........................................27
3.3 Dust Particles Dynamics...........................................31
Chapter 4 Dust Transport on Comet 67P...............................35
4.1 The Gas Coma Development..........................................36
4.1.2 The Seasonal Effect...........................................37
4.1.3 The Outgassing Model..........................................39
4.2 Motions of Dust Grains............................................41
4.3 Erosion and Accretion of Dust Mantle..............................46
4.4 Summary...........................................................51
Chapter 5 Source Regions of Dust Jets on Comet 67P..................53
5.1 Dust Jets in OSIRIS Images........................................53
5.1.1 Image Sequences...............................................53
5.1.2 Jet Identification............................................56
5.2 Jet Source Regions................................................58
5.3 Time Variability of the Jet Source Regions........................60
5.4 Local Time and Solar Zenith Angle.................................63
Chapter 6 Discussions and Conclusions...............................65
6.1 Mass Transport....................................................65
6.2 Source Regions of Dust Jets.......................................69
Appendix..............................................................74
A.1 The H2O Photodissociation in the Inner Coma of Comet 67P..........74
A.1.1 Photochemical Reactions of Water Molecules......................74
A.1.2 Numerical Process...............................................75
A.1.3 Result and Discussion...........................................77
A.2 The Hot Oxygen Corona of Callisto.................................80
A.2.1 Kinetics of Suprathermal Oxygen Atoms...........................80
A.2.2 The Hot Oxygen Corona...........................................82
A.3 The Atmospheric Mass Transfer Process of the Pluto-Charon System..84
A.3.1 The Pluto-Charon System.........................................84
A.3.2 Method..........................................................87
A.3.2 Result and Summary..............................................88
Bibliography..........................................................90
參考文獻 1. A′Hearn, M. F., Belton, M. J. S., Delamere, W. A., et al. “Deep Impact: Excavating comet Tempel 1”, Science, 301, 258, 2005.
2. Almeida, A. A., Boczko, R., Sanzovo, G. C., et al. “Analysis of total visual and CCD V-broadband observations of Comet C/1995 O1 (Hale-Bopp): 1995–2001”, Adv. Space Res., 44, 335, 2009.
3. Belton, M. J., “Cometary activity, active areas, and a mechanism for collimated outflows on 1P, 9P, 19P, and 81P”, Icarus, 210, 881, 2010.
4. Bertaux, J.-L. “Estimate of the erosion rate from H2O mass-loss measurements from SWAN/SOHO in previous perihelions of Comet 67P/Churyumov-Gerasimenko and connection with observed rotation rate variations”, A&A, 583, A38, 2015.
5. Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows Oxford: Oxford Univ. Press, 1994.
6. Biver, N., Hofstadter, M., Gulkis, S., et al. “Distribution of water around the nucleus of Comet 67P/Churyumov-Gerasimenko at 3.4 AU from the Sun as seen by the MIRO instrument on Rosetta”, A&A, 583, A3, 2015.
7. Bockelee-Morvan, D., Debout, V., Erard, S., et al. “First observations of H2O and CO2 vapor in Comet 67P/Churyumov-Gerasimenko made by VIRTIS onboard Rosetta”, A&A, 583, A6, 2015.
8. Brin, D., Mendis, D. A., “Dust release and mantle development in comets”, ApJ, 229, 402, 1979.
9. Capaccioni, F., Coradini, A., Filacchione, G., et al., “The organic-rich surface of Comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta”, Science, 347, aaa0628, 2015.
10. Cave, H. M., Tseng, K.-C., Wu, J.-S., et al. “Implementation of unsteady sampling procedures for the parallel direct simulation Monte Carlo method”, J. Comput. Phys., 227, 6249, 2008.
11. Ciarniello, M., Capaccioni1, F., Filacchione G., “Photometric properties of Comet 67P/Churyumov-Gerasimenko from VIRTIS-M onboard Rosetta”, A&A, 583, A31, 2015.
12. Combi, M.R., “Time-dependent gas kinetics in tenuous planetary atmospheres: The cometary coma”, Icarus 123, 207–226, 1996.
13. Cowan, J. J., M. F. A′Hearn, “Vaporization of comet nuclei - Light curves and life times,” Moon and Planets, 21, 155–171, 1979.
14. Crifo, J. F., Loukianov, G. A., Rodionov, A.V., et al., “Comparison between Navier–Stokes and Direct Monte–Carlo Simulations of the Circumnuclear Coma. I. Homogeneous, Spherical Source”, Icarus, 156, 249–268, 2002.
15. Crifo, J. F., Loukianov, G. A., Rodionov, A.V., et al., “Navier–Stokes and direct Monte Carlo simulations of the circumnuclear coma II. Homogeneous, aspherical sources”, Icarus, 163, 479–503, 2003.
16. Davidsson, B. J. R., “Comet Knudsen Layers”, Space Science Reviews, 138, 207–223, 2008.
17. El-Maarry, M.R., Thomas, N., Giacomini, L. et al. “Regional surface morphology of Comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images”, A&A, 583, A26, 2015.
18. Farnham, T. L., Bodewits, D., Li, J.-Y., et al. “Connections between the jet activity and surface features on Comet 9P/Tempel 1”, Icarus, 222, 540, 2013.
19. Feldman, P. D., A’Hearn, M. F., Bertaux, J, et al., “Measurements of the near-nucleus coma of Comet 67P/Churyumov-Gerasimenko with the Alice far-ultravioletspectrograph on Rosetta”, A&A, 583, A8, 2015.
20. Finklenburg, S., Thomas, N., Su, C.-C., et al., “The spatial distribution of water in the inner coma of Comet 9P/Tempel 1: Comparison between models and observations”, Icarus, 236, p.9-23, 2014.
21. Fornasier, S., Hasselmann, P. H., Barucci, M. A., et al., “Spectrophotometric properties of the nucleus of Comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft”, A&A, 583, A30, 2015.
22. Fougere, N., Combi, M. R., Tenishev, V., et al., “Understanding measured water rotational temperatures and column densities in the very innermost coma of Comet 73P/Schwassmann–Wachmann 3 B” Icarus, 221, 174–185, 2012.
23. Fougere, N., Combi, M. R., Rubin, M., et al., “Modeling the heterogeneous ice and gas coma of Comet 103P/Hartley 2”, Icarus, 225, 688–702, 2013.
24. Fougere, N., Altwegg, K., Berthelier, J. J., et al., “Three-dimensional direct simulation Monte-Carlo modeling of the coma of Comet 67P/Churyumov-Gerasimenko observed by the VIRTIS and ROSINA instruments on board Rosetta”, A&A, 588, A134, 2016.
25. Fulle, M., Colangeli, L., Agarwal, J., et al. “Comet 67P/Churyumov-Gerasimenko: the GIADA dust environment model of the Rosetta mission target”, A&A 522, A63, 2010.
26. Fulle, M., Marzari, F., Della Corte, V, et al., “Evolution of the Dust Size Distribution of Comet 67P/Churyumov–Gerasimenko from 2.2 AU to Perihelion”, ApJ, 821, 19, 2016.
27. Gladstone, G. R., S. Stern, Alan, Ennico K., et al., “The atmosphere of Pluto as observed by New Horizons”, Science, 351, aad8866, 2016.
28. Gombosi, T.I., Nagy, A.F., Cravens, T. E., “Dust and neutral gas modeling of the inner atmospheres of comets”, Reviews of Geophysics, 24, 667–700, 1986.
29. Gulkis, S., Allen, M., Allmen, P., et al., “Surface properties and early activity of Comet 67P/Churyumov-Gerasimenko”, Science, 347, aaa0709. 2015.
30. Hansen, K.C., Altwegg, K., Bertheilier, J.-J., et al., “Evolution of water production of 67P/Churyumov–Gerasimenko: an empirical model and a multi-instrument study”, MNRAS, 462, S491, 2016.
31. Hässig, M., Altwegg, K, Balsiger, H., et al. “Cometary science. Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko”, Science, 347, aaa0276-1, 2015.
32. Hirabayashi, M., Scheeres, D. J., Chesley, S. R., ”Fission and reconfiguration of bilobate comets as revealed by 67P/Churyumov–Gerasimenko”, Nature, 543, 352, 2016.
33. Hoey, W. A., Yeoha, S. K., Trafton, L. M., et al., “Rarefied gas dynamic simulation of transfer and escape in thePluto–Charon system”, Icarus 287, 87, 2007.
34. Houpis, H. L., Mendis, D. A., Ip, W.-H., “The chemical differentiation of the cometary nucleus - The process and its consequences”, ApJ, 295, 654, 1985.
35. Ip, W.-H., “On a hot oxygen corona of Mars”, Icarus, 76, 135-145, 1988.
36. Ip, W.-H., “On the neutral cloud distribution in the Saturnian magnetosphere”, Icarus, 123, 42–57, 1997.
37. Ip, W.-H., Lai, I.-L., Lee, J.-C., et al.,“Physical property and dynamical relation of the circular depressions on Comet 67P/Churyumov-Gerasimenko”, A&A, 591, A132, 2016.
38. Jewitt D. C., Festou M.C., Keller H.U., Weaver H.A. (eds.), Comets II, University of Arizona Press, Tucson, p. 659. 2004.
39. Jewitt, D., Luu, J., “Discovery of the candidate Kuiper belt object 1992 QB1”, Nature, 362, 730, 1993.
40. Jorda, L., Gaskell, R., Capanna, C., et al., “The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations”, Icarus, 277, 257, 2016.
41. Keller, H. U., Barbieri, C., Lamy, P., et al., “OSIRIS – The Scientific Camera System Onboard Rosetta”, Space Sci. Rev., 128, 433, 2007.
42. Keller, H. U., Mottola1, S., Davidsson, B., et al., “Insolation, erosion, and morphology of Comet 67P/Churyumov-Gerasimenko”, A&A, 583, A34, 2015.
43. Keller, H.U., “Comets: Dirty snowballs or icy dirtballs. Physics and Mechanics of Cometary”, Materials, 302, 39–45, 1989.
44. Keller, H.U., Mottola, S., Hviidet S. F., et al., “Seasonal mass transfer on the nucleus of Comet 67P/Chuyumov–Gerasimenko”, MNRAS, 469, S357, 2017.
45. Knollenberg, J., Lin, Z. Y., Hviid, S. F, et al., “A mini outburst from the nightside of Comet 67P/Churyumov-Gerasimenko observed by the OSIRIS camera on Rosetta”, A&A, 596, A89, 2016.
46. Knollenberg, J., Kührt, E., Keller, H. U. “Interpretation of HMC Images by a Combined Thermal and Gasdynamic Model,” Earth, Moon and Planets, Vol. 72, Issue 1-3, pp. 103-112, 1996.
47. Kramer, T., Noack, M., “On the origin of inner coma structures observed by Rosetta during a diurnal rotation of Comet 67P/Churyumov-Gerasimenko”, The Astrophysical Journal Letters, 823, 7, 2016.
48. Kramer, T., Läuter, M., Rubin, M., et al., “Seasonal changes of the volatile density in the coma and on the surface of Comet 67P/Churyumov-Gerasimenko”, MNRAS, 469, S20, 2017.
49. Lai, I.-L., Ip, W.-H., Lee, J.-C., et al., Seasonal variations of the source regions of the dust jets on Comet 67P/Churyumov-Gerasimenko, DOI: doi.org/10.1051/0004-6361/201732094, A&A, 2018.
50. Lai, I.-L., Su, C.-C., Ip, W.-H., et al., Gas outflow and dust transport of Comet 67P/Churyumov–Gerasimenko, MNRAS, 462, S533, 2017.
51. Lai, I.-L., Su, C.-C., Ip, W.-H., et al., Transport and Distribution of Oxygen Atoms from H2O Photodissociation in the Inner Coma of Comet 67P/Churyumov-Gerasimenko, Earth, Moon, and Planets, 117, 23-39 , 2016.
52. Lamy, P. L., Toth, I., Weaver, H. A., et al. “A Portrait of the Nucleus of Comet 67P/ Churyumov–Gerasimenko,” Space Science Reviews, Vol. 128, pp.23–66 2006
53. Liang, M. C., Benjamin, F. L., Pappalardo, R. T., et al., “Atmosphere of Callisto”, J. Geophys. Res., 110, E02003, 2005.
54. Lara, L. M., Lowry, S., Vincent, J.-B., et al., “Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument onboard Rosetta” A&A, 583, A9, 2015.
55. Lebofsky, L.A., “Stability of frosts in the solar system,” Icarus Vol. 25,pp 205-217, 1975.
56. Lee, J.-C., Massironi, M., Ip, W.-H., et al.,”Geomorphological mapping of Comet 67P/Churyumov–Gerasimenko’s Southern hemisphere”, MNRAS, 462, S573, 2017.
57. Liao, Y., Su, C. C., Marschall, R., et al. “3D Direct Simulation Monte Carlo Modelling of the Inner Gas Coma of Comet 67P/Churyumov–Gerasimenko: A Parameter Study”, Earth, Moon, and Planets, 117, 41-64, 2016.
58. Liao, Y., Marschall, R. Su, C. C., et al., “Water vapor deposition from the inner gas coma onto the nucleus of Comet 67P/Churyumov-Gerasimenko”, Planetary and Space Science, 157, 1-9, 2018.
59. Lin, Z.-Y., Ip, W.-H., Lai, I.-L., et al., “Morphology and Dynamics of Jets of Comet 67P/Churyumov-Gerasimenko: Early Phase Development”, A&A, 583, A11, 2015.
60. Lin, Z.-Y., Knollenberg, J., Vincent, J.-B., et al. “Investigating the physical properties of outbursts on Comet 67P/Churyumov-Gerasimenko”, MNRAS, 469, S731, 2018.
61. Lin, Z.-Y., Lai, I.-L., Su, C.-C., et al., “Observations and analysis of a curved jet in the coma of Comet 67P/Churyumov-Gerasimenko”, A&A, 588, L3, 2016.
62. Lo, M.-C., Su, C.-C., Wu, J.-S., et al., “Modelling Rarefied Hypersonic Reactive Flows Using the Direct Simulation Monte Carlo Method”, Comput. Phys. Commun., 18, 1095, 2015.
63. Marschall, R., Mottola, S., Su, C. C., et al., “Cliffs versus plains: Can ROSINA/COPS and OSIRIS data of Comet 67P/Churyumov-Gerasimenko in autumn 2014 constrain inhomogeneous outgassing?”, A&A, 605, A112, 2017.
64. Marschall, R., Su, C. C., Liao, Y., et al.,” Modelling observations of the inner gas and dust coma of Comet 67P/Churyumov-Gerasimenko using ROSINA/COPS and OSIRIS data: First results”, A&A, 589, A90, 2016.
65. Marshall, D.W., Hartogh, P., Rezac, L., et al., “Spatially resolved evolution of the local H2O production rates of Comet 67P/Churyumov-Gerasimenko from the MIRO instrument on Rosetta”, A&A, 603, A87, 2017.
66. Mendis, D.A., Brin, G. D., “Monochromatic brightness variations of comets”, the Moon, 229, 359-372, 1977.
67. Moehlmann, D., “Surface regolith and environment of comets”, Planet. Space Sci., 42, 933, 1994.
68. Müller, T. G., Lagerros, J.S.V., “Asteroids as far-infrared photometric standards for ISOPHOT”, A&A, 338, 340, 1998.
69. Nagy, A.F., Cravens, T.E, Yee, J.H., et al., “Hot oxygen atoms in the upper atmosphere of Venus”, Geophys. Res. Lett., 8, 629-632, 1981.
70. Nagy, A.F., Cravens, T.E., “Hot oxygen atoms in the upper atomspheres of Venus and Mars”, Geophys. Res. Lett., 15, 433-435, 1988.
71. Nagel, K., Breuer D., Spohn, T., “A model for the interior structure, evolution, and differentiation of Callisto”, Icarus, 169, 402, 2004.
72. Oklay, N., Mottola, S., Vincent, J.-B., et al., “Long-term survival of surface water ice on Comet 67P”, MNRAS, 469, S582, 2017.
73. Oklay, N., Vincent, J.-B., Sierks, H., et al. “Characterization of OSIRIS NAC filters for the interpretation of multispectral data of Comet 67P/Churyumov-Gerasimenko”, A&A, 583, A45, 2015.
74. Oort, J.H., “The structure of the cloud of comets surrounding the Solar System and a hypothesis concerning its origin”, Bulletin of the Astronomical Institutes of the Netherlands, 11, 91–110, 1950.
75. Pajola, M., Hoefner, S., Vincent, J.-B., et al., “The pristine interior of Comet 67P revealed by the combined Aswan outburst and cliff collapse”, Nature Astronomy, 1, A92, 2017.
76. Pajola, M., Vincent, J.-B., Güttler, C., et al., “Size-frequency distribution of boulders ≥7 m on Comet 67P/Churyumov-Gerasimenko”, A&A, 583, A37, 2015.
77. Pätzold, M., Andert, T., Hahn M., et al., “A homogeneous nucleus for Comet 67P/Churyumov–Gerasimenko from its gravity field”, Nature, 530, 63–65, 2016.
78. Schloerb, P., Keihm, S., Allmen P., et al., “MIRO observations of subsurface temperatures of the nucleus of 67P/Churyumov-Gerasimenko”, A&A, 583, A29, 2015.
79. Schmidt, H. U., Wegmann, R., Huebner, W.F., et al., “Cometary gas and plasma flow with detailed chemistry”, Comput. Phys. Commun., Vol. 49, No. 1, pp. 17 – 59, 1988.
80. Sekanina, Z., “Outgassing asymmetry of periodic Comet Encke. II - Apparitions 1868-1918 and a study of the nucleus evolution”, AJ, 95, 911, 1988.
81. Sekanina, Z., “Sublimation rates of carbon monoxide and carbon dioxide from comets at large heliocentric distances”, Asteroids, Comets, Meteors 1991, p. 545, 1992.
82. Shi, X.,Hu, X.,Sierks, H., et al., “Sunset jets observed on Comet 67P/Churyumov-Gerasimenko sustained by subsurface thermal lag”, A&A, 586, A7, 2016.
83. Sierks, H., Barbieri, C., Lamy, P., et al., “Cometary science. On the nucleus structure and activity of Comet 67P/Churyumov-Gerasimenko”, Science, 347, aaa1044, 2015.
84. Skorov, Y. V., Rickman, H., “Simulation of gas flow in a cometary Knudsen layer”, Planetary and Space Science, 46, 975-996, 1998.
85. Skorov, Y. V., Markelov, G.N., Keller, H. U., “Direct statistical simulation of the nearsurface layers of the cometary atmosphere. I. A spherical nucleus”, Solar System Research, 38, 455–475, 2004.
86. Skorov, Y. V., Markelov, G. N., , “Direct statistical simulation of the nearsurface layers of a cometary atmosphere. II: A nonspherical nucleus”, Solar System Research, 40, 219–229, 2006.
87. Skorov, Yu, Rezac, L., Hartogh, P., et al., “A model of short-lived outbursts on the 67P from fractured terrains”, A&A, 593, A76, 2016.
88. Spitale, J. N., Porco, C. C., “Association of the jets of Enceladus with the warmest regions on its south-polar fractures”, Nature, 449, 695, 2006.
89. Steckloff J. K., Johnson B. C., Bowling T., et al., “Dynamic sublimation pressure and the catastrophic breakup of Comet ISON”, Icarus, 258, 430, 2015.
90. Steckloff, J. K., Jacobson, S. A., “The formation of striae within cometary dust tails by a sublimation-driven YORP-like effect”, Icarus, 264, 160, 2016.
91. Su, C. C., Tseng, K. C., Cave, H. M., et al., “Implementation of a transient adaptive sub-cell module for the parallel-DSMC code using unstructured grids”, Comput. Fluids, 39, 1136, 2010.
92. Su, C.-C., Parallel Direct Simulation Monte Carlo (DSMC) Methods for Modeling Rarefied Gas Dynamics, PhD Thesis, Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan, 2013.
93. Su, C.-C., K.C. Tseng, H.M. Cave, Y.Y. Lian, T.C. Kuo, M.C. Jermy, and J.-S. Wu, “Implementation of a Transient Adaptive Sub-Cell Module for the Parallel DSMC Code Using Unstructured Grids,” Computers & Fluids, Vol. 39, pp. 1136-1145, 2010.
94. Tenishev, V., Combi, M.R., Davidsson, B.J.R., “A global kinetic model for cometary comae: The evolution of the coma of the Rosetta target Comet Churyumov-Gerasimenko throughout the mission”, The Astrophysical Journal, 685, 659–677, 2008.
95. Tenishev V., Combi M. R., Rubin M., “Numerical Simulation of Dust in a Cometary Coma: Application to Comet 67P/Churyumov-Gerasimenko”, ApJ., 732, 17, 2011.
96. Thomas, N., Davidsson, B., El-Maarry, M. R., et al.,”Redistribution of particles across the nucleus of Comet 67P/Churyumov-Gerasimenko”, A&A, 583, A17, 2015.
97. Vincent, J. B., A′Hearn, M., Lin, Z. Y., et al., “Summer fireworks on Comet 67P”, MNRAS, 462, 184, 2016.
98. Vincent, J.-B., Bodewits, D., Besse, S., et al., “Large heterogeneities in Comet 67P as revealed by active pits from sinkhole collapse”, Nature, 523, 63, 2015.
99. Wagner, W. “A convergence proof for Bird′s direct simulation Monte Carlo method for the Boltzmann equation”, Journal of Statistical Physics, Volume 66, 1011-1044, 1992.
100. Washburn, E. W., International Critical Tables of Numerical Data, Physics, Chemistry and Technology, Vol. III, pp. 210, 1928.
101. Weissman P. R., Kieffer H. H., “Thermal modeling of cometary nuclei”, Icarus, 52, 206, 1982.
102. Weissman, P. R., & Campins, H., Short-period comets. In Near Earth Resources (pp. 569-617). University of Arizona Press Tucson, Arizona. 1993.
103. Whipple, F. L., “A comet model. I. The acceleration of Comet Encke”, Astrophysical Journal, 111, 375-394, 1950.
104. Wu, J. S., Tseng ,K. C., Wu, F. Y., “Parallel three-dimensional DSMC method using mesh refinement and variable time-step scheme”, Comput. Phys. Commun., 162, 166, 2004.
105. Wu, J.-S. and K.-C. Tseng, "Parallel DSMC Method Using Dynamic Domain Decomposition," International Journal for Numerical Methods in Engineering, Vol. 63, pp. 37-76, 2005.
106. Xie X., Mumma, M. J., “Monte Carlo simulation of cometary atmospheres: application to comet P/Halley at the time of the Giotto spacecraft encounter I. Isotropic model”, Astrophysical Journal, 464, 442, 1996.
107. Zakharov, V. V., Rodionov, A. V., Lukianov, G. A., et al., “Monte-Carlo and multifluid modelling of the circumnuclear dust coma II. Aspherical-homogeneous, and sphericalinhomogeneous nuclei”, Icarus, 201, 358–380, 2009.
指導教授 葉永烜(Wing-Huen Ip) 審核日期 2019-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明