博碩士論文 103686601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:35.171.45.91
姓名 鐘耀照(YAOZHAO ZHONG)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 內陸棚及河口混合與擴散特性觀測研究
(Observation of mixing and dispersion characteristics in inner shelf and estuary)
相關論文
★ 西北太平洋長期波候變遷之研究★ 近岸海洋波浪對海面粗糙度之影響
★ 濁水溪河口懸浮沉積物輸送之調查研究★ 低掠角微波雷達海面背向散射強度受波浪影響程度之探討
★ 澎湖海域潮流之數值模擬及其發電潛能評估★ 台灣沿海表面風之週期特性
★ 微波雷達與CCD影像分析於潮間帶地形測量之應用★ The directional spreading of surface wave in the shallow water zone
★ Resuspension of bottom sediment on Inner shelf - A case study of North-western coast of Taiwan★ 平緩海灘表層含水量變化特性研究
★ 沿岸及河口沉積物氮移除過程的N2和N2O產率:穩定同位素示蹤劑方法的改進及應用★ Development of S-band and Coherent-on-Receive Marine Radar for Ocean Surface Wave and Current Measurement
★ 經驗動態方程分析浮游植物多樣性與生態系功能的交互作用-跨系統比較★ 生態元素比與生物體型大小影響浮游生物掠食食物網能量傳遞與結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 海岸帶作為陸地、海洋與大氣的交界區域,是陸源物質進入海洋的主要通道。進入近岸海域的陸源物質,一旦其濃度超過了海域涵容能力,將造成物質循環的平衡狀態改變,進而衝擊海域的生態環境。影響海域涵容能力的因素中,最重要的是水體混合與擴散效率。受近岸水動力影響,水體混合與擴散特性在時間上非定常、空間上非均勻,從理論、數值模式計算以了解其細部特徵都是非常困難的。若能藉由有效的觀測增進對於陸源物質在近岸海域的輸送與移運過程之了解,對陸源物質的擴散效率及其與水動力的相互作用特性的掌握將會更準確。
依據地貌分類,海岸帶包括海灘、濕地、河口與瀉湖等區域,從水動力特性角度分類,海岸帶可劃分為碎波帶、內陸棚、外陸棚區域。對於海氣通量研究,濕地及瀉湖扮演重要角色,對於海陸通量研究,陸源物質在河口及內陸棚的混合與擴散則扮演重要角色。水體的混合與擴散方面,傳統水體交換率、滯留時間等手段無法呈現河口混合行為的細部結構,也無法反映層化效應的影響。本研究研製漂流浮球陣列作為主要觀測工具,分別就內陸棚海域的混合與擴散特性、河口區域層化效應對混合的影響進行研究。研究成果分述如下:
(1)本研究採商用GPS定位晶片研製低成本且適用於近岸海域觀測的漂流浮球陣列。本研究改進定位精度、提高採樣頻率、減低製作成本、減少體積與重量、改進資料回傳及交互操作方式。針對低成本GPS晶片在低速下會發生定位跳躍的問題,本文基於ARIMA模式建立資料處理與品管方法,消除了該問題的影響,提高數據品質。透過在大型斷面水槽的漂流浮球觀測測試與校驗實驗,與ADV流速計之觀測結果比對之RMSE約為0.02 m/s。
(2)基於Stokes Boundary Layer理論,提出了一個新的內陸棚海域混合與擴散研究模型,作為理論框架。該理論中描述邊界層內速度剖面變化的參數κ1與描述流速反轉時間提前的參數κ2是兩個可用於分析海域混合效率的中間參數。進而本研究設計現場實驗檢驗並建立了一個更具可行性的內陸棚海域混合與擴散行為觀測方法。在桃園觀音近岸海域進行的不同海況下的漂流浮球陣列觀測實驗,證實理論所預測的潮流轉向時間早於水位轉向時間,隨著離岸距離越近時間提前量會增加;沿岸方向之流速會隨著離岸越近而快速下降。以漂流浮球陣列實測資料代入理論擬合得到不同時空下的κ1與κ2組合。這兩個參數顯著相關,κ2=6.02*κ1-0.0008(r = 0.97, p < 0.05)。進一步直接計算得實驗海域的υ,結果發現速度衰減項引致的υ約為相位差異項引致的3至12倍,二者均隨量距離的增加成指數形式降低。透過對比不同海況下的擬合結果,本文發現當波浪較小時,Stokes Boundary Layer理論的解釋度佳,說明此時潮流在近岸混合中扮演主要的角色;當波浪較大時,Stokes Boundary Layer理論的解釋度降低,是由於波浪引致的底邊界層增加了底床粗糙度,額外增強了混合強度所致。
(3)本文以淡水河口及核三廠溫排水口作為研究區域,探究層化效應在不同時空尺度上對河口混合的影響。淡水河口區域以海研二號研究船進行了多個航次的調查,基於三維溫鹽觀測資料,以其中2016年10月2202航次資料作為高層化效應之代表例,並以2017年3月2225航次資料作為垂向均勻混合之案例,比對二者差異。基於營養鹽濃度資料分析發現淡水河口在垂向均勻混合時的營養鹽濃度衰減速率是層化效應強時的約2倍。淡水河口DIN濃度隨鹽度衰減的速率比珠江河口快6%至46%,漂流浮球陣列觀測之淡水河口延散係數比同等規模河口的大1至2個量級。淡水河口的層化效應會阻礙營養鹽向上傳遞及溶解氧向下傳遞,改變河口氮循環進而可引發河口初級生產力下降等生態問題,本研究提供了觀測證據。
基於溫排水口航次調查之三維溫鹽資料分析顯示溫排水口漲潮期間層化效應強,退潮期間垂向均勻混合。基於溫度漂流浮球量測之水溫資料,在垂向均勻混合時溫排水口的溫度衰減速率e-folding scale是層化效應強時的約2倍。基於漂流浮球陣列觀測資料計算的溫排水口剪力流延散係數,發現漲、退潮期間的剪力流延散係數差異可達26.0%。本文透過溫排水口漂流浮球陣列觀測實驗量化了剪力流延散係數隨著Richardson數變化的趨勢。
摘要(英) As the boundary area between land, sea and atmosphere, the coastal zone is the main channel for terrestrial materials transferring into the ocean. The balance of the material cycle will be changed once the terrestrial materials exceed the capacity of the ocean self-purification, which will cause ecological pollution problems. Among the factors affecting the capacity of self- purification, the most important factor is the mixing and diffusion efficiency of water. The near-shore hydrodynamics as well as the mixing and diffusion characteristics are unsteady in time and spatially non-uniform. As a result, it is very difficult to grasp the detail information of mixing and diffusion behavior by theory analysis or by numerical model. If effective observations can be applied to improve the understanding of the mixing and transport processes of terrestrial materials in coastal waters, the evaluation of diffusion efficiency of terrestrial materials and its interaction with hydrodynamics will be more accurate.
According to the classification of landforms, the coastal zone includes beaches, wetlands, estuaries and lagoons. From the perspective of hydrodynamic characteristics, the coastal zones can be divided into surf-zone, inner shelf, middle shelf and outer shelf. For air-sea flux research, wetlands and lagoons have important impacts; for the study of the mixing and diffusion of terrestrial materials in the sea, estuaries and inner shelf play important roles. The study of mixing and diffusion of water has traditionally started with the exchange rate and residence time of water. However, these coefficients can neither represent the details of the estuary mixing behavior, nor represent the influence of the stratification effect. This paper develops the sea surface drifter array as the main observation tool to carry out researches on a) the mixing and diffusion characteristics of the inner shelf and, b) the influence of the stratification effect on the estuary mixing, specific as follows.
(1) This study developed the miniature sea surface drifters with the commercial low-cost GNSS positioning chip. On account of shallow water depth and small hydrodynamic temporal-spatial scale of inner shelf or estuaries, this study improves the positioning accuracy, increases the sampling frequency, lower the production cost, reduces the volume and weight, and improves the data post back method and interaction operation system of sea surface drifter. Aiming at the problem of positioning jumping under low speed, this study established a data processing and quality control method based on Auto Regressive Integrated Moving Average model. The influence of this problem is eliminated and the data quality of sea surface drifter is improved after applying this QC method. All the drifters are calibrated in the 200-m length water channel and the RMSE is ~0.02 m/s compared with the Acoustic Doppler Velocimeter which is installed in the middle of the water channel.
(2) Based on Stokes Boundary Layer theory, a new research framework of inner shelf mixing and diffusion is proposed. The parameter κ1 describing the change of velocity profile in the boundary layer and the parameter κ2 describing the current reversal time are two intermediate parameters that can be used to analyze the mixing efficiency of the sea area. And then this study designed the field experiments and establisded a more feasible observation method of mixing and diffusion behavior in inner shelf. This paper conducted several drifter observation experiments under different sea conditions in the coastal waters of Guanyin, Taoyuan City. It was found that the time of tide reversal is earlier than that of water level reversal, and the time difference increase as the distance to the coast decreases. The alongshore current velocity decreases rapidly as it gets closer to the coast line. Above-mentioned two parameters, κ1 and κ2, were fitted by the field drifter data. These two parameters were significantly correlated, κ2=6.02*κ1-0.0008 (r = 0.97, p < 0.05). Further, the eddy viscosity coefficient of the study area was calculated based on these two parameters. It is found that the eddy viscosity coefficient caused by the velocity attenuation term is about 3 to 12 times that of the phase difference term. Both of them decrease exponentially with increasing distance to the coast line. By comparing the fitting results under different sea conditions, this study found that the Stokes Boundary Layer theory has a good interpretation when the waves are small (Hs < 0.3 m), indicating that the tide also plays a role in coastal mixing. When the waves are large, Stokes Boundary Layer stays at the lower degree of interpretation.
(3) This study selects the Danshui estuary and thermal discharge outlet of No.3 nuclear power plant as the research areas to explore the influence of stratification effect on mixing at different temperial and spatial scales. A number of voyage surveys were conducted with the OR-2 research vessel around Danshui estuary. The 2202 voyage conducted in October 2016 was selected as a representative example of strong stratification condition and the 2225 vyage conducted in March 2017 was selected as an example of verticle well mixing condition based on the 3-D water temperature and salinity observation data. It is found that the decay rate of nutrient concentration under weak stratification condition is about 2 times of that under strong stratification condition in the Danshui estuary. The decay rate of DIN concentration of Danshui estuary is 6% to 46% larger than that of the Pearl River estuary, and the dispersion coefficient of Danshui estuary is one to two orders of magnitude larger than that of an equivalent estuary. The stratification effect of the Danshui estuary will hinder the upward transfer of nutrients and the downward transfer of dissolved oxygen, and then changes the nitrogen cycle of estuary, which will lead to ecological problems such as the decline of primary productivity in the estuary. This study provides observational evidence.
The analysis of the 3-D water temperature and salinity data shows that the stratification effect of the water around thermal discharge outlet is strong during flood tide and weak during ebb tide. The temperature decay rate under weak stratification condition is 2 times faster than that under strong stratification condition based on the e-folding scale. The shear dispersion coefficient is calculated based on the drifter data. And it is found that the difference of dispersion coefficients under different stratification strength can reach 26.0%. This study quantify the variation trend of dispersion coefficient with the increasing Richardson number.
關鍵字(中) ★ 內陸棚
★ 河口
★ 混合與擴散
★ 觀測
關鍵字(英) ★ inner shelf
★ estuary
★ mixing and dispersion
★ observation
論文目次 摘 要 I
ABSTRACT III
目 錄 VI
圖 目 IX
表 目 XIV
符號說明 XV
第1章 研究背景與目的 1
1.1 研究背景 1
1.2 研究目的 5
1.3 研究內容及架構 5
第2章 理論與方法 7
2.1 對流-延散方程式 7
2.1.1 分子擴散 7
2.1.2 紊流混合 9
2.1.3 剪力流延散 11
2.2 深度平均之傳輸方程 12
2.3 延散係數及其計算方法 14
第3章 微型漂流浮球研製、測試與資料品管 16
3.1 前言 16
3.2 硬體結構與規格 20
3.3 測試檢校實驗 23
3.4 資料處理與品管 25
3.5 小結與建議 31
第4章 基於斯托克斯邊界層理論的內陸棚混合模型 33
4.1 前言 33
4.2 斯托克斯邊界層理論 36
4.3 研究區域與環境參數 40
4.3.1 研究區域 40
4.3.2 海氣象條件 42
4.3.3 周邊海域流場 45
4.4 結果分析與討論 49
4.4.1 漂流浮球軌跡及潮流轉向 49
4.4.2 基於斯托克斯邊界層理論計算延散係數 52
4.4.3 基於漂流浮球陣列計算延散係數及其尺度效應討論 59
4.4.4 波浪對Stokes Boundary Layer理論適用性影響之討論 61
4.5 小結 63
第5章 層化效應對河口混合的影響 64
5.1 前言 64
5.2 研究區域與方法 67
5.2.1 淡水河口 67
5.2.2 溫排水口 69
5.3 淡水河口結果分析與討論 73
5.3.1 淡水河口層化效應 73
5.3.2基於濃度衰減速率評估混合強度及討論 74
5.3.3基於漂流浮球陣列計算延散係數 78
5.4 溫排水口結果分析與討論 79
5.4.1 溫排水口周邊海域海氣通量估算 79
5.4.2 溫排水口層化效應 82
5.4.3 基於水溫衰減速率評估混合強度 87
5.4.4 基於漂流浮球陣列計算延散係數 89
5.4.5 紊流強度之時空特性 92
5.5 小結 93
第6章 結論與建議 95
6.1 結論 95
6.2 建議 97
參考文獻 98
附錄 歷次漂流浮球實驗之流場圖 110
參考文獻 Aiki, H., and R. Greatbatch 2012: Thickness-Weighted Mean theory for the effect of surface gravity waves on mean flows in the upper ocean. J. Phys. Oceanogr., 42, 725-747.
Aiki, H., and R. Greatbatch 2013: The vertical structure of the surface wave radiation stress for circulation over a sloping bottom as given by Thickness-Weighted-Mean theory. J. Phys. Oceanogr., 43, 149-164.
Apotsos, A., B. Raubenheimer, S. Elgar, and R.T. Guza, 2008: Wave-driven setup and alongshore flows observed onshore of a submarine canyon. J. Geophys. Res. 113, doi:10.1029/2007JC004514.
Ardhuin, A., N. Rascle, and K.A. Belibassakis, 2008: Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Model., 20, 35-60.
Aref H. 1984. Stirring by chaotic advection. J. Fluid Mech. 192:115–73
Batchelor, G.K. (2000). An Introduction to Fluid Dynamics. Cambridge University Press. ISBN 0-521-66396-2.
Boffetta G, Sokolov I. 2002. Relative dispersion in fully developed turbulence: the Richardson’s Law and intermittency corrections. Phys. Rev. Lett. 88:094501
Bowen, A. J., & Inman, D. L. (1974). Nearshore mixing due to waves and wave-induced currents. Rapp. PV Reun. Cons. Int. Explor. Mer, 167, 6-12.
Brander, R. W., & Short, A. D. (2000). Morphodynamics of a large-scale rip current system at Muriwai Beach, New Zealand. Marine Geology, 165(1-4), 27-39.
Brown, J.A., J.H. MacMahan, A.J.H.M. Reniers, and E.B. Thornton, 2015: Field observations of surf zone–inner shelf exchange on a rip-channeled beach. J. Phys. Oceanogr., 45, 2339–2355.
Brüggen, M., & Hillebrandt, W. (2001). Mixing through shear instabilities. Monthly Notices of the Royal Astronomical Society, 320(1), 73-82.
Buch, E., & Dahlin, H. (Eds.). (2000). BOOS Plan: Baltic Operational Oceanographic System 1999-2003. EuroGOOS Office, Southampton Oceanography Centre.
Chapman, R. D., and H. C. Graber, 1997: Validation of HF radar measurements. Oceanography, 10, 76–79.
Chen, C., & Liu, L. M. (1993). Joint estimation of model parameters and outlier effects in time series. Journal of the American Statistical Association, 88(421), 284-297.
Chen, J. L., Hsu, T. J., Shi, F., Raubenheimer, B., & Elgar, S. (2015). Hydrodynamic and sediment transport modeling of New River Inlet (NC) under the interaction of tides and waves. Journal of Geophysical Research: Oceans, 120(6), 4028-4047.
Clark, D. B., Lenain, L., Feddersen, F., Boss, E., & Guza, R. T. (2014). Aerial imaging of fluorescent dye in the near shore. Journal of Atmospheric and Oceanic Technology, 31(6), 1410-1421.
Clark, M. M. (2011). Transport modeling for environmental engineers and scientists. John Wiley & Sons.
Clarke, L. B., Ackerman, D., & Largier, J., (2007). Dye dispersion in the surfzone: Measurements and simple models. Continental Shelf Research, 27, 650–669.
Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: a review. Marine pollution bulletin, 62(12), 2588-2597.
Cózar, A., Echevarría, F., González-Gordillo, J. I., Irigoien, X., Úbeda, B., Hernández-León, S., ... & Fernández-de-Puelles, M. L. (2014). Plastic debris in the open ocean. Proceedings of the National Academy of Sciences, 111(28), 10239-10244.
Crank, J. (1979). The mathematics of diffusion. Oxford university press.
Curcic M, Chen S, Ozgokmen TM. 2016. Hurricane induced ocean waves and Stokes drift and their impacts on surface transport and dispersion in the Gulf of Mexico. Geophys. Res. Lett. 43:2773–81
Cushman-Roisin, B., & Beckers, J. M. (2011). Introduction to geophysical fluid dynamics: physical and numerical aspects (Vol. 101). Academic Press.
Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. science, 321(5891), 926-929.
Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate extremes: observations, modeling, and impacts. science, 289(5487), 2068-2074.
Eriksen M, et al. (2013) Plastic pollution in the South Pacific subtropical gyre. Mar Pollut Bull 68(1–2):71–76.
Feddersen, F., 2014: The generation of surfzone eddies in a strong alongshore current, J. Phys. Oceanogr., 44, doi: 10.1175/JPO-D-13-051.1.
Feddersen, F., J.H. Trowbridge, and A.J. Williams, 2007: Vertical structure of dissipation in the nearshore. J. Phys. Oceanogr., 37, 1764-1777.
Fewings, M., Lentz, S. J., & Fredericks, J. (2008). Observations of cross-shelf flow driven by cross-shelf winds on the inner continental shelf. Journal of Physical Oceanography, 38(11), 2358-2378.
Fischer, H. B., List, J. E., Koh, C. R., Imberger, J., & Brooks, N. H. (1979). Mixing in inland and coastal waters. Elsevier.
Fujimura, A., A. Reniers, C. Paris, A. Shanks, J. MacMahan, and S. Morgan, 2013: Slope-dependent biophysical modeling of surf zone larval transport. Coast. Dynam., 661-670.
García-Ladona, E., Salvador, J., Fernandez, P., Pelegrí, J. L., Elósegui, P., Sánchez, O., ... & Salat, J. (2016). Thirty years of research and development of Lagrangian buoys at the Institute of Marine Sciences. Scientia Marina, 80(S1), 141-158.
Geernaert, G., & Katsaros, K. B. (1986). Incorporation of stratification effects on the oceanic roughness length in the derivation of the neutral drag coefficient. Journal of physical oceanography, 16(9), 1580-1584.
Glavovic, B. C., Limburg, K., Liu, K. K., Emeis, K. C., Thomas, H., Kremer, H., ... & Swaney, D. P. (2015). Living on the Margin in the Anthropocene: engagement arenas for sustainability research and action at the ocean–land interface. Current Opinion in Environmental Sustainability, 14, 232-238.
Goldstein MC, Rosenberg M, Cheng L (2012) Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biol Lett 8(5):817–820
Graf, W. H. (1984). Hydraulics of sediment transport. Water Resources Publication.
Grant, S. B., Kim, J. H., Jones, B. H., Jenkins, S. A., Wasyl, J., & Cudaback, C. (2005). Surf zone entrainment, along-shore transport, and human health implications of pollution from tidal outlets. Journal of Geophysical Research, 110(C10025). doi: 10.1029/2004JC002401.
Haller, M. C., D. Honegger, and P.A. Catalán, 2014: Rip current observations via marine radar. J. Waterway, 140, 115-124, doi:10.1061/(ASCE)WW.1943-5460.0000229.
Halpern, B. S., S. Walbridge, K. A. Selkoe, C. V. Kappel, F. Micheli, C. D’Agrosa, J. F. Bruno, K. S. Casey, C. Ebert, H. E. Fox, R. Fujita, D. Heinemann, H. S. Lenihan, E. M. P. Madin, M. T. Perry, E. R. Selig, M. Spalding, R. Steneck, R. Watson. (2008). A global map of human impact on marine ecosystems. Science, 319(5865), 948-952.
Hansen, J.E., T.T. Janssen, B. Raubenheimer, F. Shi, P.L. Barnard, and I.S. Jones, 2014: Observations of surf zone alongshore pressure gradients onshore of an ebb-tidal delta. Coast. Eng., 91, 251-260.
Harris, T. F. W., Jordaan, J. M., McMurray, W. R., Verwey, C. J., & Anderson, F. P. (1963). Mixing in the surf zone. International Journal of Air and Water Pollution, 7, 649–667.
Hasselmann, K. 1970: Wave-driven inertial oscillations. Geophys. Fluid Dyn., 1, 463-502.
Haza AC, Griffa A, Martin P, Molcard A, Ozgokmen TM, et al. 2007. Model-based directed drifter launches ¨in the Adriatic Sea: results from the DART Experiment. Geophys. Res. Lett. 34:L10605
Haza AC, Ozgokmen TM, Griffa A, Garraffo Z, Piterbarg L. 2012. Parameterization of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgrid-scale models. Ocean Model. 42:31–49
Herbers, T.H.C., and T.T. Janssen, 2016: Lagrangian surface wave motion and infragravity Stokes drift fluctuations. J. Phys. Oceanogr., 46, 1009-1021.
Herbers, T.H.C., S. Elgar, and R.T. Guza, 1995: Generation and propagation of infragravity waves., J. Geophys. Res., 100, 24,863-24,872.
Holley, E. R. (1996). Diffusion and dispersion. In Environmental Hydraulics (pp. 111-151). Springer Netherlands.
Hsu, T. W., Ou, S. H., & Tzang, S. Y. (2000). Evaluations on coastal topographical changes at Hualien Coast, Taiwan. Journal of Coastal Research, 790-799.
Inman, D. L., Tait, R. J., & Nordstrom, C. E., (1971). Mixing in the surfzone. Journal of Geophysical Research, 26, 3493–3514.
IPCC. (2013). Climate change 2013: The physical science basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5)(Cambridge Univ Press, New York), 25.
Janssen, T.T., J.A. Battjes, and A.R. Van Dongeren, 2003: Long waves induced by short-wave groups over a sloping bottom. J. Geophys. Res., 108, doi: 10.1029/2002JC001515.
Johnson, D. (2004). The spatial and temporal variability of nearshore currents. University of Western Australia.
Johnson, D., and C. Pattiaratchi, 2004: Transient rip currents and nearshore circulation on a swell-dominated beach. J. Geophys. Res., 109, C02026, doi:10.1029/2003JC001798.
Johnson, D., and C. Pattiaratchi, 2006: Boussinesq modelling of transient rip currents. Coast. Eng., 53, 419439.
Kates, R. W., C. E. Colten, S. Laska, and S. P. Leatherman. (2006). Reconstruction of New Orleans after Hurricane Katrina: A research perspective. Proceedings of the National Academy of Sciences, 103(40), 14653-14660
Kirincich, A., 2016: The occurrent, drivers, and implications of submesoscale eddies on the Martha’s Vineyard inner shelf. J. Phys. Oceanogr., 46, 2645-2662.
Kohut, J.T., S.M. Glenn, and R.J. Chant, 2004: Seasonal current variability on the New Jersey inner shelf. J. Geophys. Res., 109, doi:10.1029/2003JC001963.
Kolmogorov A. 1941. Dissipation of energy in locally isotropic turbulence. Proc. Math. Phys. Sci. 434:15–17
Komar, P.D. 1998. Beach Processes and Sedimentation (2nd Edition). Prentice Hall.
Kumar, N., G. Voulgaris, J.C. Warner, and M. Olabarrieta, 2012: Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Model., 47, 65–95.
Lebedev K, Yoshinari H, Maximenko NA, Hacker PW. 2007. YoMaHa’07: velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. Tech. Note 4(2), Int. Pac. Res. Cent., Univ. Hawaii, Honolulu
Ledwell JR, Montgomery ET, Polzin KL, St. Laurent LC, Schmitt RW, Toole JM. 2000. Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403:179–182
Ledwell JR, Watson AJ, Law C. 1998. Mixing of a tracer in the pycnocline. J. Geophys. Res. 103:21499–529
Lees, B. J. (1981). Relationship between eddy viscosity of seawater and eddy diffusivity of suspended particles. Geo-Marine Letters, 1(3-4), 249-254.
Lentz S.J., M.R. Fewings, P. Howd, J. Fredericks, and K. Hathaway, 2008: Observations and a model of undertow over the inner continental shelf. J. Phys. Oceanogr. 38, 2341–2357.
Lentz, S.J. and M.R. Fewings, 2012: The wind- and wave-driven inner shelf circulation. Ann. Rev. Mar. Sci, 4, 317-343.
Lentz, S.J., R.T. Guza, S. Elgar, F. Feddersen, and T.H.C. Herbers, 1999: Momentum balances on the North Carolina inner shelf. J. Geophys. Res., 104, 18,205–18,226.
Lerczak, J., C. Winant, and M. Henderschott, 2003: Observations of the semidiurnal internal tide on the Southern California slope and shelf. J. Geophys. Res., 108, doi:10.1029/2001JC001128.
Levin, L. A., Liu, K. K., Emeis, K. C., Breitburg, D. L., Cloern, J., Deutsch, C., ... & Limburg, K. (2015). Comparative biogeochemistry–ecosystem–human interactions on dynamic continental margins. Journal of Marine Systems, 141, 3-17.
Liu, K. K., Kao, S. J., Wen, L. S., & Chen, K. L. (2007). Carbon and nitrogen isotopic compositions of particulate organic matter and biogeochemical processes in the eutrophic Danshuei Estuary in northern Taiwan. Science of the total environment, 382(1), 103-120.
Liu, P. L. F., Park, Y. S., & Lara, J. L. (2007). Long-wave-induced flows in an unsaturated permeable seabed. Journal of Fluid Mechanics, 586, 323-345.
Long, J.W., and H. Özkan-Haller, 2005: Offshore controls on nearshore rip currents. J. Geophys. Res., 110, doi:10.1029/2005JC003018.
Long, J.W., and H.T. Özkan-Haller, 2009: Low-frequency characteristics of wave group-forced vortices. J. Geophys. Res., 114, doi:10.1029/2008JC004894.
MacMahan, J.H., A.J.H.M. Reniers, and E.B. Thornton, 2010: Vortical surf zone fluctuation with O(10) min period. J. Geophys. Res., 115, doi:10.1029/2009JC005383.
Mancho A, Hernandez-Garcıa E, Small D, Wiggins S, Fernandez V. 2008. Lagrangian transport through an ocean front in the northwestern Mediterranean Sea. J. Phys. Oceanogr. 38:1222–37
Manning, J. P., & Churchill, J. H. (2006). Estimates of dispersion from clustered-drifter deployments on the southern flank of Georges Bank. Deep Sea Research Part II: Topical Studies in Oceanography, 53(23-24), 2501-2519.
Marmorino, G.O., G.B. Smith, and W.D. Miller, 2013: Infrared remote sensing of surf-zone eddies. IEEE J. Selec. Top. App. Earth Obs. Remote Sens., 6, 1710-1718.
Martinez ML, Intralawan A, Vazquez G, Perez‐Maqueo O, Sutton P, Landgrave R: The coasts of our world: Ecological, economic and social importance. Ecological Economics 2007, 10.1016/j.ecolecon.2006.10.022, 63:254‐272.
McGranahan, G., D. Balk, and B. Anderson (2007). The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urbanisation 19, 17–37, doi:10.1177/0956247807076960.
McWilliams, J.C., and J.M. Restrepo, 1999: The wave-driven ocean circulation, J. Phys. Oceanogr., 29, 2523-2540.
McWilliams, J.C., J.M. Restrepo, and E.M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech., 511, 135-178.
Mellor, G. 2003: The three-dimensional current and surface wave equations. J. Phys. Oceanogr., 33, 1978-1989.
Novelli, G., Guigand, C. M., Cousin, C., Ryan, E. H., Laxague, N. J., Dai, H., ... & Özgökmen, T. M. (2017). A biodegradable surface drifter for ocean sampling on a massive scale. Journal of Atmospheric and Oceanic Technology, 34(11), 2509-2532.
Okubo A. 1970. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res. Oceanogr. Abstr. 17:445–54
Ottino J. 1989. The Kinematics of Mixing: Stretching, Chaos and Transport. Cambridge, UK: Cambridge Univ. Press
Paduan, J. D., and L. K. Rosenfeld, 1996: Remotely sensed surface currents in Monterey Bay from shore-based HF radar (CODAR). J. Geophys. Res., 101, 20669–20686.
Pal, B. K., Murthy, R., & Thomson, R. E. (1998). Lagrangian measurements in Lake Ontario. Journal of Great Lakes Research, 24(3), 681-697.
Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37.
Peterson, E. W., & Hennessey Jr, J. P. (1978). On the use of power laws for estimates of wind power potential. Journal of Applied Meteorology, 17(3), 390-394.
Polton, J.A., D.M. Lewis, and S.E. Belcher, 2005: The role of wave-induced Coriolis-Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr., 35, 444-457.
Pope, S. B. (2001). Turbulent flows. Cambridge University Press.
Raven, J. A., & Taylor, R. (2003). Macroalgal growth in nutrient-enriched estuaries: a biogeochemical and evolutionary perspective. Water, Air and Soil Pollution: Focus, 3(1), 7-26.
Reniers, A.J.H.M., J.A. Roelvink, and E.B. Thornton, 2004: Morpho-dynamic modeling of an embayed beach under wave group forcing. J. Geophys. Res., 109, doi:10.1029/2002JC001586.
Reniers, A.J.H.M., J.H. MacMahan, E.B. Thornton, T.P. Stanton, M. Henriquez, J.W. Brown, J.A. Brown, and E. Gallagher, 2009: Surf zone surface retention on a rip-channeled beach. J. Geophys. Res., 114, doi: 10.1029/2008JC005153.
Richardson LF. 1926. Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A 110:709–37
Rodriguez, A., Sanchez-Arcilla, A., Redondo, J. M., Bahia, E., & Sierra, J. P. (1995). Pollutant dispersion in the nearshore region: modelling and measurements. Water Science and Technology, 32(9-10), 169-178.
Rosenzweig, C., and W. Solecki. (2014). Hurricane Sandy and adaptation pathways in New York: Lessons from a first-responder city. Global Environmental Change, 28, 395-408, doi:10.1016/j.gloen-vcha.2014.05.003.
Schmidt, W. E., Woodward, B. T., Millikan, K. S., Guza, R. T., Raubenheimer, B., & Elgar, S. (2003). A GPS-tracked surf zone drifter. Journal of Atmospheric and Oceanic Technology, 20(7), 1069-1075.
Schnoor, J. L. (1996). Environmental modeling: fate and transport of pollutants in water, air, and soil. John Wiley and Sons.
Scotti, A., and J. Pineda, 2004: Observations of very large and steep internal waves of elevation near the Massachusetts coast. Geophys. Res. Lett., 31, doi:10.1029/2004GL021052.
Shepard, F. P., & Inman, D. L. (1950). Nearshore water circulation related to bottom topography and wave refraction. Eos, Transactions American Geophysical Union, 31(2), 196-212.
Shepard, F. P., Emery, K. O., & La Fond, E. C. (1941). Rip currents: a process of geological importance. The Journal of Geology, 49(4), 337-369.
Short, A. D., & Hogan, C. L. (1994). Rip currents and beach hazards: their impact on public safety and implications for coastal management. Journal of Coastal Research, 197-209.
Shroyer, E.L., J.N. Moum, and J.D. Nash, 2011: Nonlinear internal waves over New Jersey’s continental shelf. J. Geophys. Res., 116, doi:10.1029/2010JC006332.
Signell, R. P., & Geyer, W. R. (1991). Transient eddy formation around headlands. Journal of Geophysical Research: Oceans, 96(C2), 2561-2575.
Sinnett, G., and F. Feddersen, 2014: The surf zone heat budget: The effect of wave heating, Geophys. Res. Lett., 41, 7217-7226.
Small, C., & Nicholls, R. J. (2003). A global analysis of human settlement in coastal zones. Journal of coastal research, 584-599.
Smit, P.B., T.T. Janssen, and T.H.C. Herbers, 2015: Stochastic modeling of coherent wave fields over variable depth. J. Phys. Oceanogr., 45, 1139–1154.
Sonu, C. J. (1972). Field observation of nearshore circulation and meandering currents. Journal of Geophysical Research, 77(18), 3232-3247.
Spydell, M. S., Feddersen, F., Olabarrieta, M., Chen, J., Guza, R. T., Raubenheimer, B., & Elgar, S. (2015). Observed and modeled drifters at a tidal inlet. Journal of Geophysical Research: Oceans, 120(7), 4825-4844.
Spydell, M., and F. Feddersen, 2009: Lagrangian drifter dispersion in the surf zone: Directionally spread, normally incident waves. J. Phys. Oceanogr., 39, 809–830.
Suanda, S.H., J.A. Barth, R.A. Holman, and J. Stanley, 2014: Shore-based video observations of nonlinear internal waves across the inner shelf. J. Atmos. Ocean. Technol., 31, 714-728.
Sundermeyer MA, Terrya EA, Ledwell JR, Cunningham AG, LaRocque PE, et al. 2007. Three-dimensional mapping of fluorescent dye using a scanning, depth-resolving airborne radar. J. Atmos. Ocean. Technol. 24:1050–65
Takewaka, S., Misaki, S., & Nakamura, T. (2003). Dye diffusion experiment in a longshore current field. Coastal Engineering Journal, 45(03), 471-487.
Taylor G. 1921. Diffusion by continuous movements. Proc. Lond. Math. Soc. 20:196–212
Taylor, G. (1954, May). The dispersion of matter in turbulent flow through a pipe. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 223, No. 1155, pp. 446-468).
Thorpe, S.A. (2007). An introduction to ocean turbulence. Cambrige University Press.
Trowbridge, J., and S. Elgar, 2001: Turbulence measurements in the surf zone. J. Phys. Oceanogr., 31, 2403-2417.
Tseng, R. S. (2002). On the dispersion and diffusion near estuaries and around islands. Estuarine, Coastal and Shelf Science, 54(1), 89-100.
UNEP, 2006, Assessing Coastal Vulnerability: Developing a Global Index for Measuring Risk, 54pp
Walter, R.K., C.B. Woodson, R.S. Arthur, O.B. Fringer, and S.G. Monismith, 2012: Nearshore internal bores and turbulent mixing in southern Monterey Bay. J. Geophys. Res., 177, doi:10.1029/2012JC008115.
Wu, M. L., Hong, Y. G., Yin, J. P., Dong, J. D., & Wang, Y. S. (2016). Evolution of the sink and source of dissolved inorganic nitrogen with salinity as a tracer during summer in the Pearl River Estuary. Scientific reports, 6, 36638.
Xu, Z., and A.J. Bowen, 1994: Wave- and wind-driven flow in water of finite depth. J. Phys. Oceanogr., 24, 1850–1866.
Yasuda, H. (1980). Generating mechanism of the tidal residual current due to the coastal boundary layer. Journal of the Oceanographical Society of Japan, 35(6), 241-252.
Zhang, S., M.H. Alford, and J.B. Mickett, 2015: Characteristics, generation and mass transport of nonlinear internal waves on the Washington continental shelf. J. Geophys. Res., 120, 741-758.
葛全勝. 鄭景云. 劉健.(2006). 過去2000a中國東部冬半年溫度變幅與周期. 氣候變化研究進展, 2(3), 109.
翁立南, 邵煥傑, 余俊宏, 曾若玄, 錢樺. (2017). 核三廠溫排水周圍海域紊流混合之探測. 第39屆海洋工程研討會.
指導教授 錢樺(Hwa Chien) 審核日期 2019-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明