博碩士論文 103690602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.232.188.251
姓名 西拉(BALAJI KUMAR SEELA)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 印度-太平洋區域於不同降雨之雨滴粒徑分佈 (RSD)特徵分析及應用
(Raindrop size distribution (RSD) characteristics and their applications in different precipitating clouds over Indo-Pacific region)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要

雨滴粒徑分布(RSD)對氣象學、水文學、遙測和無線電波通訊具有重大的意義。本篇論文試圖了解RSD在印度洋-太平洋於不同季節和熱帶氣旋降水特徵分析,並評估熱帶氣旋(也稱颱風)在台灣的降雨侵蝕力。為了達成以上目標,本篇使用大範圍的地面(雨滴譜儀、雷達和雨量筒資料)、遙測(MODIS和TRMM)與再分析資料(ERA-interim)資料。帛琉和台灣的RSD在夏季(06/16-08/31)有明顯的差異 : 台灣比帛琉觀測到較高濃度的中和大雨滴,降雨積分公式與Gamma參數都有明顯的不同,複雜的地貌(中央山脈)和高氣膠濃度都是造成兩島之間RSD的差異。台灣夏季(06/16-08/31)與冬季(DJF)降雨之比較 : 高濃度大雨滴出現在夏季;另一方面,高濃度小雨滴出現在冬季,兩者的遙測和再分析資料都顯示,劇烈對流活動與相對較高的地表溫度狀況下所發展的直展雲可以對應到夏季RSD的特徵。從統計的角度,印度洋相較於太平洋的熱帶氣旋具有較多的小雨滴 ; 反之,太平洋熱帶氣旋有較高濃度的中和大雨滴,另外,Z-R 和 μ-Λ 兩者的關係式也有明顯的差異。透過使用在台灣15年RSD和60年雨量筒的時雨量資料評估颱風所帶來的降雨侵蝕力,颱風平均降雨侵蝕力全球平均降雨侵蝕力,此外,颱風的降水侵蝕力由北往南漸增強,相對高值出現在台灣的東部與南部區域,颱風平均年侵蝕力從1968-2017並沒有明顯的趨勢。
摘要(英) Abstract
Raindrop size distribution (RSD) has significant implications meteorology, hydrology, remote-sensing, radio-wave communication and in hydrology. In this thesis an attempt has been made to comprehend RSD characteristics of seasonal, and tropical cyclones rainfall at different observational sites located in Indo-Pacific region as well as to assess the rainfall erosivity for Taiwan region that was induced due to tropical cyclones (also called typhoons). To achieve the above mentioned goals, a wide range of ground-based (disdrometers, radars and rain gauges), remote-sensing (MODIS and TRMM), and re-analysis (ERA-interim) data sets have been used. A comparison study conducted for the summer season (16 June -31 August) RSD characteristics for Palau and Taiwan observational sites showed clear demarcations in RSD between these two islands. Rainfall over Taiwan has a higher concentration of mid and large drops than Palau. The rain integral parameters as well as other gamma parameters showed clear distinction between these two islands. Both complex topography (central mountain range) and relatively higher aerosol loading were found to be the causative mechanism responsible for these RSD variation between these two islands. The RSD characteristics of summer (16 June -31 August) and winter (December-February) seasons rainfall over north Taiwan reveled a higher concentration of large drops in summer and small drops in winter. Both remote-sensing and re-analysis data sets revealed that the deeply extended clouds with intense convective activity and relatively higher ground temperatures in summer are responsible for the RSD distinctions between summer and winter seasons. The statistical analysis of RSD characteristics for Indian and Pacific Ocean tropical cyclones (TCs) revealed that the number concentration of small drops is higher in TCs of Indian Ocean than Pacific Ocean, whereas, the number concentration of mid-size and large drops is higher in Pacific Ocean TCs. The radar reflectivity- rain rate (Z-R) and slope- shape (μ-Λ) relations of Indian Ocean and Pacific Ocean are found to be distinctly different. The rainfall erosion caused by typhoon rainfall over Taiwan are assessed by using fifteen years of RSD and 60-years of hourly rain gauges data, and established that typhoons’ mean rainfall erosivity is higher than the global mean rainfall erosivity. Moreover, regional variability of typhoons rainfall erosivity showed an increasing pattern from north to south, with relatively higher values over eastern and southern part of Taiwan.
關鍵字(中) ★ 雨滴大小分佈
★ 熱帶氣旋
★ 降雨侵蝕力
關鍵字(英) ★ Raindrop size distribution
★ tropical cyclones
★ disdrometer
★ rainfall erosivity
論文目次 TABLE OF CONTENTS

Abstract………………………………………………………………………… i

Acknowledgements…………………………………………………………….. iii

Table of contents……………………………………………………………….. vi

List of figures…………………………………………………………………... viii

List of tables……………………………………………………………………. xv

List of symbols…………………………………………………………………. xviii

List of acronyms……………………………………………………………….. xx

Chapter I: Introduction………………………………………………………. 01
1.1 Introduction………………………………………………………………. 01
1.2 Cloud microphysics………………………………………………………. 03
1.2.1 Cloud and rain formation…………………………………………. 03
1.2.2 Cold and warm rain process………………………………………. 05
1.2.3 Convective and stratiform precipitation………………………….. 06
1.3 Brief literature of RSD……………………………………………………. 07
1.4 Description about study area……………………………………………… 15
1.5 Scope of the thesis………………………………………………………… 18
1.6 Outline of the thesis……………………………………………………….. 19

Chapter II: Instrumentation and methodology……………………………… 21
2.1 Joss-Waldvogel disdrometer (JWD)……………………………………… 21
2.2 Parsivel disdrometer (PSD)………………………………………………. 35
2.3 Radar reflectivity mosaic…………………………………………………. 47
2.4 Satellite and ERA-Interim data…………………………………………… 49

Chapter III: A comparison study of summer season RSD between Palau
and Taiwan, two Islands in Western Pacific…………………… 51
3.1 Raindrop Size Distribution in Different Rain Rate Classes………….…. 53
3.2 RSD Variations in Stratiform and Convective Precipitation……………. 61
3.3 Radar Reflectivity (Z)-Rain Rate (R) Relations………………………… 68
3.4 Discussion……………………………………………………………...... 69
3.5 Summary………………………………………………………………… 75


Chapter IV: RSD characteristics of summer and winter season rainfall
over north Taiwan…………………………………………………………. 77
4.1 Raindrop size distribution in different rain rate classes……………………. 81
4.2 Diurnal variation of RSD……………………………………………...…… 88
4.3 Stratiform and convective RSD……………………………………….…... 91
4.4 Radar reflectivity and rain rate (Z-R) relations……………………………. 95
4.5 Mu-lambda (μ-Λ) relations………………………………………………... 96
4.6 Discussion………………………………………………………………..... 97
4.7 Summary…………………………………………………………………... 108

Chapter V: RSD characteristics of Indian and Pacific Ocean
tropical cyclones………………………………………………….. 110
5.1 RSD in different rain rate classes .………………………………………. 116
5.2 Dm-R and Nw-R relations………………………………………………… 119
5.3 Shape and slope (μ-Λ) relations……………………………….…………. 122
5.4 The relationship between mass-mean diameter and standard deviation
of mass spectrum ( Dm-σm)……………………………………………….. 123
5.5 RSD in stratiform and Convective precipitation…………….…………… 125
5.6 Radar reflectivity- rain rate (Z-R) relations………………….…………... 128
5.7 Discussion ……………………………………………………………….. 131
5.8 Summary…………………………………………………………………. 134

Chapter VI: An assessment of tropical cyclones erosivity for Taiwan using
RSD………………………………………………………………… 135
6.1 Estimation of rainfall intensity (I) and kinetic energy relations…… …… 137
6.2 Validation of kinetic energy-rainfall intensity relations …………………… 146
6.3 Spatial variation of typhoon rainfall, rainfall erosivity and erosivity density.. 149
6.4 Trends in typhoons precipitation and erosivity………………………………. 158
6.5 Summary …………………………………………………………………….. 162

Chapter VII: Summary and conclusions……………………………………….. 165
7.1 A comparison study of summer season raindrop size distribution
between Palau and Taiwan two islands in Western Pacific………………. 165
7.2 Raindrop size distribution characteristics of summer and winter
seasons rainfall over north Taiwan……………………………………….. 166
7.3 Raindrop size distribution characteristics of Indian and Pacific Ocean
tropical cyclones………………………………………………………….. 169
7.4 An assessment of tropical cyclones rainfall erosivity for Taiwan………... 169
7.5 Feature scope/work of the thesis…………………………………………. 170

Chapter VIII: References………………………………………………………. 172
參考文獻 REFERENCES

Amburn, S. A., & Wolf, P. L. (1997). VIL density as a hail indicator. Wea.Forecasting, 12 (3), 473–478.

Angulo-Martinez, M., & Barros, A. P. (2015). Measurement uncertainty in rainfall kinetic energy and intensity relationships for soil erosion studies: An evaluation using PARSIVEL disdrometers in the Southern Appalanchian Mountains. Geomorphology, 228, 28–40.

Angulo-Martínez, M., and S. Beguería (2012), Trends in Rainfall Erosivity in NE Spain at Annual, Seasonal and Daily Scales, Hydrol. Earth Syst. Sci., 16(10), 3551-3559, doi:10.5194/hess-16-3551-2012.

Atlas, D., & Williams, C. R. (2003). The anatomy of a continental tropical convective storm. J. Atmos. Sci., 60(1), 3–15.

Atlas, D., R. C. Srivastava, and R. S. Sekhon (1973), Doppler Radar Characteristics of Precipitation at Vertical Incidence, Rev. Geophys., 11(1), 1-35, doi:10.1029/RG011i001p00001.

Atlas, D., Ulbrich, C. W., Marks, F. D. Jr., Amitai, E., & Williams, C. R. (1999). Systematic variation of drop size and radar-rainfall relations. J. Geophys. Res. 104(D6), 6155–6169.

Atlas, D., & Ulbrich, C. (2006). Drop size spectra and integral remote sensing parameters in the transition from convective to stratiform rain. Geophy. Res. Lett., 33. L16803, doi:10.1029/2006GL026824.

Awaka, J., Iguchi, T., & Okomoto, K. (2009). TRMM PR standard algorithm 2A23 and its performance on bright band detection. J. Meteor. Soc. Japan. Ser. II, 87(A), 31–52.

Awaka, J., Iguchi, T., Kumagai, H., & Okamoto, K. (1997). Rain type classification algorithm for TRMM precipitation radar. In Proc. 1997 Int. Geoscience and Remote Sensing Symp. (pp. 1633–1635). Singapore: IEEE.

Badron, K., Ismail, A. F., Din, J., & Tharek, A. R. (2011). Rain induced attenuation studies for V-band satellite communication in tropical region. J. Atmospheric Sol.-Terr. Phys., 73(5-6), 601–610.

Battaglia, A., E. Rustemeier, A. Tokay, U. Blahak, and C. Simmer (2010), PARSIVEL Snow Observations: A Critical Assessment, J. Atmos. Oceanic Technol., 27(2), 333-344, doi:10.1175/2009JTECHA1332.1.

Bennartz, R. & Rausch, J. (2017). Global and regional estimates of warm cloud droplet number concentration based on 13 years of AQUA-MODIS observations, Atmos. Chem. Phys., 17, 9815-9836.

Bennartz, R. (2007). Global assessment of marine boundary layer cloud droplet number concentration from satellite, J. Geophys. Res., 112, D02201, https://doi.org/10.1029/2006jd007547.

Bhattacharya, A., A. Adhikari, and A. Maitra (2013), Multi-technique Observations on Precipitation and Other Related Phenomena during Cyclone Aila at a Tropical Location, Int. J. Remote Sens., 34(6), 1965-1980, doi:10.1080/01431161.2012.730157.

Boodoo, S., Hudak, D., Ryzhkov, A., Zhang, P., Donaldson, N., Sills, D., & Reid, J. (2015). Quantitative precipitation estimation from a C-band dual-polarized radar for the 8 July 013 flood in Toronto, Canada. J. Hydrometeorol., 16(5), 2027–2044.

Borrelli, P., et al. (2017), An Assessment of the Global Impact of 21st Century Land Use Change on Soil Erosion, Nat. Commun., 8(1), 2013, doi:10.1038/s41467-017-02142-7.

Borrelli, P., N. Diodato, and P. Panagos (2016), Rainfall Erosivity in Italy: a National Scale Spatio-temporal Assessment, Int. J. Digit. Earth, 9(9), 835-850, doi:10.1080/17538947.2016.1148203.

Brandes, E. A., G. Zhang, and J. Vivekanandan (2004), Comparison of Polarimetric Radar Drop Size Distribution Retrieval Algorithms, J. Atmos. Oceanic Technol., 21(4), 584-598, doi:10.1175/1520-0426(2004)021<0584:COPRDS>2.0.CO;2.

Brandes, E. A., Zhang, G., & Vivekanandan, J. (2002). Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteorol., 41(6), 674-685.

Brandes, E. A., Zhang, G., & Vivekanandan, J. (2003). An evaluation of a drop distribution–based rainfall estimator. J. Appl. Meteorol., 42(5), 652–660.

Brenguier J. L., Burnet, F., & Geoffroy, O. (2011). Cloud optical thickness and liquid water path - does the k coefficient vary with droplet concentration? Atmos. Chem. Phys. 11: 9771–9786.

Brenguier, J. L., Pawlowska, H., Schuller, L., Preusker, R., Fischer, J., & Fouquart, Y. (2000). Radiative properties of boundary layer clouds, Droplet effective radius versus number concentration, J. Atmos. Sci., 57, 803–821.

Bringi, V. N., and V. Chandrasekar (2001), Polarimetric Doppler Weather Radar: Principles and Applications, Cambridge university press.

Bringi, V., Chandrasekar, V., Hubbert, J., Gorgucci, E., Randeu, W. L., & Schoenhuber, M. (2003). Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60(2), 354–365.

Brown, B. R., M. M. Bell, and A. J. Frambach (2016), Validation of Simulated Hurricane Drop Size Distributions using Polarimetric Radar, Geophy. Res. Lett., 43(2), 910-917, doi:10.1002/2015gl067278.
Campos, E. F., Zawadzki, I, Petitdidier, M., & Fernandez, M. (2006). Measurement of raindrop size distributions in tropical rain at Costa Rica. J. Hydrol., 328 (1), 98–109.

Campos, E., & Zawadzki, I. (2000). Instrumental uncertainties in Z-R relations. J. Appl. Meteorol., 39 (7), 1088-1102.

Cao, Q., Zhang, G., Brandes, E., Schuur, T., Ryzhkov, A., & Ikeda, K. (2008). Analysis of video disdrometer and polarimetric radar to characterize rain microphysics in Oklahoma. J. Appl. Meteor.. Climatol., 47(8), 2238–2255.

Catari, G., J. Latron, and F. Gallart (2011), Assessing the Sources of Uncertainty Associated with the Calculation of Rainfall Kinetic Energy and Erosivity – Application to the Upper Llobregat Basin, NE Spain, Hydrol. Earth Syst. Sci., 15(3), 679-688, doi:10.5194/hess-15-679-2011.

Chakravarty, K., & Maitra, A. (2010). Rain attenuation studies over an earth space path at a tropical location. J. Atmospheric Sol.-Terr. Phys.,, 72(1), 135–138.

Chakravarty, K., & Raj, P.E. (2013). Raindrop size distributions and their association with characteristics of clouds and precipitation during monsoon and post-monsoon periods over a tropical Indian station. Atmos. Res., 124, 181–189.

Chakravarty, K., Raj, P.E., Bhattacharya, A., & Maitra, A. (2013). Microphysical characteristics of clouds and precipitation during pre-monsoon and monsoon period over a tropical Indian station. J. Atmospheric Sol.-Terr. Phys.,, 94, 28–33

Chan, J. C. (2006), Comment on" Changes in tropical cyclone number, duration, and intensity in a warming environment", Science, 311(5768), 1713-1713.

Chan, J. C. L., and J.-e. Shi (1996), Long-term Trends and Interannual Variability in Tropical Cyclone Activity over the Western North Pacific, Geophy. Res. Lett., 23(20), 2765-2767, doi:10.1029/96GL02637.

Chang, C. P., T. C. Yeh, and J. M. Chen (1993), Effects of Terrain on the Surface Structure of Typhoons over Taiwan, Mon. Weather Rev., 121(3), 734-752, doi:10.1175/1520-0493(1993)121<0734:EOTOTS>2.0.CO;2.

Chang, J. M., H. E. Chen, B. J. D. Jou, N. C. Tsou, and G. W. Lin (2017), Characteristics of Rainfall Intensity, Duration, and Kinetic Energy for Landslide Triggering in Taiwan, Eng. Geol., 231, 81-87, doi:10.1016/j.enggeo.2017.10.006.

Chang, W.-Y., Wang, T.-C. C., & Lin, P.-L. (2009). Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26(10), 1973–1993.

Chen, B., Hu, Z., Liu, L., & Zhang, G. (2017). Raindrop size distribution measurements at 4,500 m on the Tibetan Plateau during TIPEX-III. J. Geophys. Res.: Atmos., 122. https://doi.org/10.1002/2017JD027233

Chen, B., Wang, J., & Gong, D. (2016). Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over east China. J. Appl. Meteor. Climatol., 55(3), 621–634.

Chen, B., Y. Wang, and J. Ming (2012), Microphysical Characteristics of the Raindrop Size Distribution in Typhoon Morakot (2009), J. Trop. Meteor., 18, 162-171.

Chen, B., Yang, J., & Pu, J. (2013). Statistical characteristics of raindrop size distribution in the Meiyu season observed in Eastern China. J. Meteor. Soc. Japan. Ser. II, 91(2), 215–227.

Chen, C. S., & Chen, Y. L. (2003). The rainfall characteristic of Taiwan. Mon. Weather Rev., 131(7), 1323–1341.

Chen, C.-W., H. Chen, and T. Oguchi (2016), Distributions of Landslides, Vegetation, and Related Sediment Yields During Typhoon Events in Northwestern Taiwan, Geomorphology, 273, 1-13.

Chen, C.-W., Y.-S. Tung, J.-J. Liou, H.-C. Li, C.-T. Cheng, Y.-M. Chen, and T. Oguchi (2019), Assessing Landslide Characteristics in a Changing Climate in Northern Taiwan, Catena, 175, 263-277, doi:10.1016/j.catena.2018.12.023.

Chen, J.-M., T. Li, and C.-F. Shih (2010), Tropical Cyclone– and Monsoon-Induced Rainfall Variability in Taiwan, J. Climate, 23(15), 4107-4120, doi:10.1175/2010jcli3355.1.

Chen, S., Hong, Y., Kulie, M., Behrangi, A., Stepanian, P. M., Cao, Q., You, Y., Zhang, J., Hu, J., Zhang, X. (2016). Comparison of snowfall estimates from the NASA cloudsat cloud profiling radar and NOAA/NSSL multi radar multi sensor system. J. Hydrol., 541, 862-872.

Chen, Y.-c., K.-t. Chang, H.-y. Lee, and S.-h. Chiang (2015), Average Landslide Erosion Rate at the Watershed Scale in Southern Taiwan Estimated from Magnitude and Frequency of Rainfall, Geomorphology, 228, 756-764, doi:10.1016/j.geomorph.2014.07.022.

Chen, Y.-C., K.-t. Chang, Y.-J. Chiu, S.-M. Lau, and H.-Y. Lee (2013), Quantifying Rainfall Controls on Catchment-Scale landslide Erosion in Taiwan, Earth Surf. Process Landf., 38(4), 372-382, doi:10.1002/esp.3284.

Chen, T.-C., Yen, M.-C., Hsieh, J.-C., & Arritt, R. W. (1999). Preliminary results of the rainfall measured by the automatic rainfall and meteorological telemetry system in Taiwan: Diurnal and seasonal variations. Bull. Amer. Meteor. Soc., 80, 2299–2312.

Cheung, K. K. W., L. R. Huang, and C. S. Lee (2008), Characteristics of Rainfall During Tropical Cyclone Periods in Taiwan, Nat. Hazards Earth Syst. Sci., 8(6), 1463-1474, doi:10.5194/nhess-8-1463-2008.

Chu, Y.-H., & Su, C.-L. (2008). An investigation of the slope-shape relation for gamma raindrop size distribution. J. Appl. Meteor.. Climatol., 47(10), 2531–2544.

Cohen, C., & McCaul, E. W. Jr. (2006). The sensitivity of simulated convective storms to variations in prescribed single-moment microphysics parameters that describe particle distributions, sizes, and numbers. Mon. Weather Rev., 134(9), 2547–2565.

Dadson, S. J., et al. (2003), Links Between Erosion, Runoff Variability and Seismicity in the Taiwan Orogen, Nature, 426, 648, doi:10.1038/nature02150

Das, S. K., Konwar, M., Chakravarty, K., & Deshpande, S. M. (2017). Raindrop size distribution of different cloud types over the Western Ghats using simultaneous measurements from Micro-Rain Radar and disdrometer. Atmos. Res., 186(2017), 72–82.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Vitart, F. (2011). The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137(656), 553–597.

Deo, A., & Walsh, K. J. E. (2016). Contrasting tropical cyclone and non-tropical cyclone related rainfall drop size distribution at Darwin, Australia. Atmos. Res., 181, 81–94.

Didlake, A. C., and M. R. Kumjian (2017), Examining Polarimetric Radar Observations of Bulk Microphysical Structures and Their Relation to Vortex Kinematics in Hurricane Arthur (2014), Mon. Weather Rev., 145(11), 4521-4541.

Didlake, A. C., and M. R. Kumjian (2018), Examining Storm Asymmetries in Hurricane Irma (2017) Using Polarimetric Radar Observations, Geophy. Res. Lett., doi:10.1029/2018gl080739.

Emanuel, K. (2005), Increasing Destructiveness of Tropical Cyclones Over the Past 30 Years, Nature, 436(7051), 686-688.

Fadnavis, S., Deshpande, M., Ghude, S. D., & Raj, P. E. (2014). Simulation of severe thunder storm event: A case study over Pune, India. Nat. Hazards, 72(2), 927–943.

Feng, Y. C., and M. Bell (2019), Microphysical Characteristics of an Asymmetric Eyewall in Major Hurricane Harvey (2017). Geophy. Res. Lett., 46, 461– 471.

Fenta, A. A., H. Yasuda, K. Shimizu, N. Haregeweyn, T. Kawai, D. Sultan, K. Ebabu, and A. S. Belay (2017), Spatial Distribution and Temporal Trends of Rainfall and Erosivity in the Eastern Africa Region, Hydrol. Process., 31(25), 4555-4567.

Fiener, P., P. Neuhaus, and J. Botschek (2013), Long-term Trends in Rainfall Erosivity–Analysis of High Resolution Precipitation Time Series (1937–2007) from Western Germany, Agric. For. Meteorol., 171-172, 115-123.

Fornis, R. L., H. R. Vermeulen, and J. D. Nieuwenhuis (2005), Kinetic Energy–Rainfall Intensity Relationship For Central Cebu, Philippines for Soil Erosion Studies, J. Hydrol., 300(1-4), 20-32.

Friedrich, K., E. A. Kalina, F. J. Masters, and C. R. Lopez (2013b), Drop-Size Distributions in Thunderstorms Measured by Optical Disdrometers during VORTEX2, Mon. Weather Rev., 141(4), 1182-1203.

Friedrich, K., S. Higgins, F. J. Masters, and C. R. Lopez (2013a), Articulating and Stationary PARSIVEL Disdrometer Measurements in Conditions with Strong Winds and Heavy Rainfall, J. Atmos. Oceanic Technol., 30(9), 2063-2080.

Galewsky, J., C. P. Stark, S. Dadson, C. C. Wu, A. H. Sobel, and M. J. Horng (2006), Tropical Cyclone Triggering of Sediment Discharge in Taiwan, J. Geophys. Res. : Earth Surface, 111(F3), n/a-n/a, doi:10.1029/2005jf000428.

García-Oliva, F., J. M. Maass, and L. Galicia (1995), Rainstorm Analysis and Rainfall Erosivity of a Seasonal Tropical Region with a Strong Cyclonic Influence on the Pacific Coast of Mexico, J. Appl. Meteorol., 34(11), 2491-2498.

Gilmore, M. S., Straka, J. M., & Rasmussen, E. N. (2004). Precipitation uncertainty due to variations in precipitation particle parameters with in a simple microphysics scheme. Mon. Weather Rev., 132(11), 2610–2627.

Gunn, R., & Kinzer, G. D. (1949). The terminal velocity of fall for water droplets in stagnant air. J. Meteorol., 6, 233–248.

Heymsfield, A. J., Bansemer, A., Field, P. R., Durden, S. L., Stith, J. L., Dye, J. E., Hall, W., & Grainger, C. A. (2002). Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 3457–3491.

Hou, A. Y., Skofronick-Jackson, G., Kummerow, C. D., & Shepherd, J. M. (2008). Global Precipitation Measurement. Precipitation: Advances in Measurement, Estimation and Prediction, S. Michaelides, Ed., Springer, 131–169.

Houze, R. A., Jr. (1993), Cloud Dynamics, Academic Press Inc, San Diego, Calif.

Hu, Z., and R. C. Srivastava (1995), Evolution of Raindrop Size Distribution by Coalescence, Breakup, and Evaporation: Theory and Observations, J. Atmos. Sci., 52(10), 1761-1783.

Huang, J., J. Zhang, Z. Zhang, and C.-Y. Xu (2013), Spatial and Temporal Variations in Rainfall Erosivity During 1960–2005 in the Yangtze River Basin, Stoch Environ Res Risk Assess., 27(2), 337-351.

Iguchi, T., Kozu, T., Meneghini, R., Awaka, J., & Okamoto, K. (2000). Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteorol., 39(12), 2038–2052.

Battan L. J. (1960), Radar Meteorology, 86(368), 292-292, doi:10.1002/qj.49708636830.

Jaffrain, J., and A. Berne (2011), Experimental Quantification of the Sampling Uncertainty Associated with Measurements from PARSIVEL Disdrometers, J. Hydrometeor., 12(3), 352-370.

Janapati, J., B. K. seela, M. V. Reddy, K. K. Reddy, P.-L. Lin, T. N. Rao, and C.-Y. Liu (2017), A Study on Raindrop Size Distribution Variability in Before and After Landfall Precipitations of Tropical Cyclones Observed over Southern India, J. Atmospheric Sol.-Terr. Phys., 159, 23-40.

Jayalakshmi, J., and K. K. Reddy (2014), Raindrop Size Distributions of Southwest and Northeast Monsoon Heavy Precipitation Observed over Kadapa (14°4′N, 78°82′E), a Semi-arid Region of India, Curr. Sci., 107(8), 1312-1320.
Jayawardena, A. W., and R. B. Rezaur (2000), Measuring Drop Size Distribution and Kinetic Energy of Rainfall Using a Force Transducer, Hydrol. Process., 14(1), 37-49.

Jiang, H., and E. J. Zipser (2010), Contribution of Tropical Cyclones to the Global Precipitation from Eight Seasons of TRMM Data: Regional, Seasonal, and Interannual Variations, J. Climate, 23(6), 1526-1543.

Jiang, H., and E. J. Zipser (2010), Contribution of Tropical Cyclones to the Global Precipitation from Eight Seasons of TRMM Data: Regional, Seasonal, and Interannual Variations, J. Climate, 23(6), 1526-1543.

Jorgensen, D. P., and P. T. Willis (1982), A Z-R Relationship for Hurricanes, J. Appl. Meteorol., 21(3), 356-366.

Joss, J., and A. Waldvogel (1969), Raindrop Size Distribution and Sampling Size Errors, J. Atmos. Sci., 26(3), 566-569.

Jung, S. A., Lee, D.-I., Jou, B. J.-D., & Uyeda, H. (2012). Microphysical properties of maritime squall line observed on June 2, 2008 in Taiwan. J. Meteor. Soc. Japan. Ser. II 90(5), 833–850.

Kim, D.-K., and D.-I. Lee (2017), Raindrop Size Distribution and Vertical Velocity Characteristics in the Rainband of Hurricane Bolaven (2012) Observed by a 1290 MHz Wind Profiler, J. Atmospheric Sol.-Terr. Phys., 155, 27-35.

Kim, D.-K., Y.-H. Kim, and K.-Y. Chung (2013), Vertical Structure and Microphysical Characteristics of Typhoon Kompasu (2010) at Landfall, Asia-Pac. J. Atmospheric Sci., 49(2), 161-169.

King, M. D., Menzel, W. P., Kaufman, Y. J., Tanre, D., Gao, B.-C., Platnick, S.,…Hubanks, P. A. (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor. IEEE Trans. Geosci. Remote Sens., 41(2), 442–458.

Kinnell, P. I. A. (1981), Rainfall Intensity-Kinetic Energy Relationships for Soil Loss Prediction1, Soil Sci. Soc. Am. J., 45(1), 153-155.

Knutson, T. R., J. L. McBride, J. Chan, K. Emanuel, G. Holland, C. Landsea, I. Held, J. P. Kossin, A. K. Srivastava, and M. Sugi (2010), Tropical cyclones and climate change, Nat. Geosci., 3, 157.

Kozu, T., Iguchi, T., Kubota, T., Yoshida, N., Seto, S., Kwiatkowski, J., & Takayabu, Y. N. (2009b). Feasibility of raindrop size distribution parameter estimation with TRMM precipitation radar observations of shallow convection with a rain cell model. J. Meteor. Soc. Japan, 87A, 53–66.

Kozu, T., Reddy, K. K., Mori, S., Thurai, M., Ong, J. T., & Rao, D. N. (2006). Seasonal and diurnal variations of raindrop size distribution in Asian monsoon region. J. Meteor. Soc. Japan, 84A, 195–209.

Kozu, T., Shimomai, T., & Kashiwagi, N. (2009a). Raindrop size distribution modeling from a statistical rain parameter relation and its application to the TRMM precipitation radar rain retrieval algorithm. J. Appl. Meteor. Climatol., 48(4), 716–724.

Krishna, U. V. M., K. K. Reddy, B. K. Seela, R. Shirooka, P.-L. Lin, and C.-J. Pan (2016), Raindrop Size Distribution of Easterly and Westerly Monsoon Precipitation Observed over Palau Islands in the Western Pacific Ocean, Atmos. Res., 174-175, 41-51.

Kumar, L. S., Lee, Y. H., & Ong, J. T. (2010). Truncated gamma drop size distribution models for rain attenuation in Singapore EEE T. Antenn. Propag., 58(4), 1325–1335.

Kumar, L. S., Lee, Y. H., & Ong, J. T. (2011). Two-parameter gamma drop size distribution models for Singapore. . IEEE Trans. Geosci. Remote Sens., 49(9), 3371–3380.

Kumar, S. B., and K. K. Reddy (2013), Rain Drop Size Distribution Characteristics of Cyclonic and North East Monsoon Thunderstorm Precipitating Clouds Observed over Kadapa (14.47°N, 78.82°E), Tropical Semi-arid Region of India, Mausam, 64(1), 35-48.

Kumari, N., S. B. Kumar, J. Jayalakshmi, and K. K. Reddy (2014), Raindrop Size Distribution Variations in JAL and NILAM Cyclones Induced Precipitation Observed over Kadapa (14.47 o N, 78.82 o E), a Tropical Semi-arid Region of India, Indian J. Radio Space Phys., 43, 57-66.

Kummerow, C., Hong, Y., Olson, W. S., Yang, S., Adler, R. F., McCollum, J., Wilheit, T. T. (2001). The evolution of the Goddard profile algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteorol., 40(11), 1801–1820.

Laceby, J. P., C. Chartin, O. Evrard, Y. Onda, L. Garcia-Sanchez, and O. Cerdan (2016), Rainfall Erosivity in Catchments Contaminated with Fallout from the Fukushima Daiichi Nuclear Power Plant Accident, Hydrol. Earth Syst. Sci., 20(6), 2467-2482.

Lam, H. Y., Din, J., & Jong, S. L. (2015). Statistical and Physical Descriptions of Raindrop Size Distributions in Equatorial Malaysia from Disdrometer Observations. Adv. Meteorol., vol. 2015, Article ID 253730.
Landsea, C. W. (2005), Hurricanes and global warming, Nature, 438(7071), E11-E12, doi:10.1038/nature04477.

Lee, G., & Zawadzki, I. (2005). Variability of drop size distributions: Noise and noise filtering in disdrometric data. J. Appl. Meteorol., 44(5), 634–652.

Lee, M.-H., and H.-H. Lin (2015), Evaluation of Annual Rainfall Erosivity Index Based on Daily, Monthly, and Annual Precipitation Data of Rainfall Station Network in Southern Taiwan, Int. J. Distr. Sensor Net., 11(6), doi:10.1155/2015/214708.

Lee, M.-T., P.-L. Lin, W.-Y. Chang, B. K. Seela, and J. Janapati (2019), Microphysical Characteristics and Types of Precipitation for Different Seasons over North Taiwan, J. Meteor. Soc. Japan. Ser. II, 97, doi:10.2151/jmsj.2019-048.

Lee, T. Y., N. M. Hong, Y. T. Shih, J. C. Huang, and S. J. Kao (2017), The sources of streamwater to small mountainous rivers in Taiwan during typhoon and non-typhoon seasons, Environ. Sci. Pollut. Res., 24(35), 26940-26957.

Li, X., and X. Ye (2018), Variability of Rainfall Erosivity and Erosivity Density in the Ganjiang River Catchment, China: Characteristics and Influences of Climate Change, Atmosphere, 9(2), doi:10.3390/atmos9020048.

Liang, A., L. Oey, S. Huang, and S. Chou (2017), Long-term Trends of Typhoon-induced Rainfall Over Taiwan: In-situ Evidence of Poleward Shift of Typhoons in Western North Pacific in Recent Decades, J. Geophys. Res. Atmos., 122(5), 2750-2765.

Liao, L., Meneghini, R., & Tokay, A. (2014). Uncertainties of GPM DPR rain estimates caused by DSD parameterizations. J. Appl. Meteor. Climatol., 53(11), 2524–2537.

Lin, G.-W., and H. Chen (2012), The Relationship of Rainfall Energy with Landslides and Sediment Delivery, Eng. Geol., 125, 108-118, doi:10.1016/j.enggeo.2011.11.010.

Lin, II, and J. C. Chan (2015), Recent Decrease in Typhoon Destructive Potential and Global Warming Implications, Nat. Commun., 6, 7182, doi:10.1038/ncomms8182.

Löffler-Mang, M., and J. Joss (2000), An Optical Disdrometer for Measuring Size and Velocity of Hydrometeors, J. Atmos. Oceanic Technol., 17(2), 130-139.

Lu, J. Y., C. C. Su, T. F. Lu, and M. M. Maa (2008), Number and Volume Raindrop Size Distributions in Taiwan, Hydrol. Process., 22(13), 2148-2158.

Mace, G. G., & Avey, S. (2017). Seasonal variability of warm boundary layer cloud and precipitation properties in the Southern Ocean as diagnosed from A-Train data. J. Geophys. Res. Atmos., 122, 1015–1032.

Madden, L. V., L. L. Wilson, and N. Ntahimpera (1998), Calibration and Evaluation of an Electronic Sensor for Rainfall Kinetic Energy, Phytopathology, 88(9), 950-959.

Maki, M., Keenan, T.D., Sasaki, Y., & Nakamura, K. (2001). Characteristics of the raindrop size distribution in Tropical Continental Squall lines observed in Darwin, Australia. J. Appl. Meteorol., 40, 1393–1412.

Marks, F. D., D. Atlas, and P. T. Willis (1993), Probability-Matched Reflectivity-Rainfall Relations for a Hurricane from Aircraft Observations, J. Appl. Meteorol., 32(6), 1134-1141.

Martin, G. M., Johnson, D. W., & Spice, A. (1994). The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds. J Atmos. Sci. 51:1823–1842.

Marzano, F. S., D. Cimini, and M. Montopoli (2010), Investigating Precipitation Microphysics using Ground-based Microwave Remote Sensors and Disdrometer Data, Atmos. Res., 97(4), 583-600.

Marzuki, M., Kozu, T., Shimomai, T., Randeu, W. L., Hashiguchi, H., & Shibagaki, Y. (2009). Diurnal variation of rain attenuation obtained from measurement of raindrop size distribution in equatorial Indonesia. . IEEE Trans. Geosci. Remote Sens., 57(4), 1191–1196.

Marzuki, Randeu, W. L., Kozu, T., Shimomai, T., Hashiguchi, H., & Schönhuber, M. (2013). Raindrop axis ratios, fall velocities and size distribution over Sumatra from 2D-video disdrometer measurement. Atmos. Res., 119, 23–37.

McFarquhar, G. M., & List, R. (1993). The effect of curve fits for the disdrometer calibration on raindrop spectra, rainfall rate and radar reflectivity. J. Appl. Meteorol., 32(4), 774–782.

McFarquhar, G. M., Hsieh, T.-L., Freer, M., Mascio, J., & Jewett, B. F. (2015). The characterization of ice hydrometeor gamma size distributions as volumes in N0–λ–μ phase space: Implications for microphysical process modeling. J. Atmos. Sci., 72(2), 892–909.

Mei, W., and S.-P. Xie (2016), Intensification of landfalling typhoons over the northwest Pacific since the late 1970s, Nat. Geosci., 9, 753, doi:10.1038/ngeo2792

Merceret, F. J. (1974), On The Size Distribution of Raindrops in Hurricane Ginger, Mon. Weather Rev., 102(10), 714-716.

Mondal, A., D. Khare, and S. Kundu (2016), Change in Rainfall Erosivity in the Past and Future due to Climate Change in the Central Part of India, Int. Soil Water Conserv. Res., 4(3), 186-194.

Montgomery, D. R., M. Y. F. Huang, and A. Y. L. Huang (2014), Regional Soil Erosion in Response to Land use and Increased Typhoon Frequency and Intensity, Taiwan, Quat. Res., 81(1), 15-20.

Nakajima, T., & King, M. D. (1990). Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements, Part I: Theory. J. Atmos. Sci., 47(15), 1878–1893.

Nakamura, K., & Iguchi, T. (2007). In V. Levizanni, P. Bauer, & F. J. Turk (Eds.), Dual-wavelength radar algorithm. Measuring precipitation from space, (pp. 225–234). New York: Springer.

Nanko, K., Moskalski, S. M., & Torres, R. (2016). Rainfall erosivity–intensity relationships for normal rainfall events and a tropical cyclone on the US southeast coast. J. Hydrol., 534, 440–450

Niu, S., Jia, X., Sang, J., Liu, X., Lu, C., & Liu, Y. (2010). Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains. J. Appl. Meteor. Climatol., 49(4), 632–645.

Panagos, P., et al. (2015), Rainfall Erosivity in Europe, Sci. Total Environ., 511, 801-814.

Panagos, P., et al. (2017), Global Rainfall Erosivity Assessment Based on High-temporal Resolution Rainfall Records, Sci. Rep., 7(1), 4175.

Parsons, A. J., and A. M. Gadian (2000), Uncertainty in Modelling the Detachment of Soil by Rainfall, Earth Surf. Process Landf., 25(7), 723-728.

Pawlowska, H., & Brenguier, J.-L. (2003). An observational study of drizzle formation in stratocumulus clouds for general circulation models. J. Geophys. Res., 108(D15), 8630, https://doi.org/10.1029/2002JD002679.

Peduzzi, P., B. Chatenoux, H. Dao, A. De Bono, C. Herold, J. Kossin, F. Mouton, and O. Nordbeck (2012), Global Trends in Tropical Cyclone Risk, Nat. Clim. Change, 2, 289.

Platnick, S., et al., (2015). MODIS Atmosphere L3 Daily Product. NASA MODS Adaptive Processing System, Goddard Space Flight Center, USA: http://dx.doi.org/10/5067/MODIS/MOD08_D3.006

Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A., Riedl, J. C., & Frey, R. A. (2003). The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41(2), 459–473.

Prat, O. P., and B. R. Nelson (2013), Mapping the world′s tropical cyclone rainfall contribution over land using the TRMM Multi-satellite Precipitation Analysis, Water Resour. Res., 49(11), 7236-7254.

Radhakrishna, B., and T. Narayana Rao (2010), Differences in Cyclonic Raindrop Size Distribution from Southwest to Northeast Monsoon Season and from that of Noncyclonic Rain, J. Geophys. Res., : Atmos., 115, doi:10.1029/2009jd013355.

Radhakrishna, B., Rao, T. N., Rao, D. N., Rao, N. P., Nakamura, K., & Sharma, A. K. (2009). Spatial and seasonal variability of raindrop size distributions in southeast India. J. Geophy. Res., 114, D04203. https://doi.org/10.1029/2008JD011226

Rao, T.N., Radhakrishna, B., Nakamura, K., & Rao, N.P. (2009). Differences in raindrop size distribution from southwest monsoon to northeast monsoon at Gadanki. Q. J. R. Meteorol. Soc., 135, 1630–1637.

Reddy, K. K., & Kozu, T. (2003). Measurements of raindrop size distribution over Gadanki during southwest and northeast monsoon. Indian J. Radio Space Phys., 32, 286–295.

Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V.,…Holben, B. N. (2005). The MODIS aerosol algorithm, products and validation. J. Atmos. Sci., 62(4), 947–973.

Renard, K. G., G. R. Foster, G. A. Weesies, D. K. McCool, and D. C. Yoder (1997), Predicting Soil Erosion byWater: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE) (Agricultural Handbook 703). , US Department of Agriculture, Washington, DC,.

Rosenfeld, D., and C. W. Ulbrich (2003), Cloud Microphysical Properties, Processes, and Rainfall Estimation Opportunities, Meteorol. Monogr., 52, 237-258.

Rosewell, C. J. (1986). Rainfall kinetic energy in Eastern Australia. J. Appl. Meteor. Climatol., 25(11), 1695–1701.

Ryzhkov, A. V., & Zrnic, D. S. (1995). Comparison of dual polarization radar estimators of rain. J. Atmos. Oceanic Technol., 12(2), 249–256.

Sadeghi, S. H. R., and Z. Hazbavi (2015), Trend analysis of the rainfall erosivity index at different time scales in Iran, Nat. Hazards, 77(1), 383-404.

Sadeghi, S. H., M. Zabihi, M. Vafakhah, and Z. Hazbavi (2017), Spatiotemporal Mapping of Rainfall Erosivity Index for Different Return Periods in Iran, Nat. Hazards, 87(1), 35-56.

Salles, C., J. Poesen, and D. Sempere-Torres (2002), Kinetic Energy of Rain and Its Functional Relationship with Intensity, J. Hydrol., 257(1), 256-270.

Sauvageot, H., & Lacaux, J. P. (1995). The shape of averaged drop size distributions. J. Atmos. Sci., 52(8), 1070–1083.

Seela, B. K., J. Janapati, P.-L. Lin, K. K. Reddy, R. Shirooka, and P. K. Wang (2017), A Comparison Study of Summer Season Raindrop Size Distribution Between Palau and Taiwan, Two Islands in Western Pacific, J. Geophys. Res.: Atmos., 122(21), doi:10.1002/2017JD026816.

Seela, B. K., J. Janapati, P.-L. Lin, P. K. Wang, and M.-T. Lee (2018), Raindrop Size Distribution Characteristics of Summer and Winter Season Rainfall Over North Taiwan, J. Geophys. Res.: Atmos., 123(20), 11,602-611,624, doi:10.1029/2018JD028307.

Seliga, T. A., & Bringi, V. N. (1976). Potential use of the radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteorol., 15(1), 69–76.

Sempere-Torres, D., C. Salles, J. D. Creutin, and G. Delrieu (1992), Quantification of Soil Detachment by Raindrop Impact: Performance of Classical Formulae of Kinetic Energy in Mediterranean Storms, in Erosion and Sediment Transport Monitoring Programmes in River Basins (Proceedings of the Oslo Symposium, August 1992), edited, pp. 115-124, IAHS Publ. .

Sheppard, B. E. (1990). Effect of irregularities in the diameter classification of raindrops by the Joss–Waldvogel disdrometer. J. Atmos. Oceanic Technol., 7(1), 180–183.

Sheppard, B. E., & Joe, P. I. (1994). Comparison of raindrop size distribution measurements by a Joss-Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. . J. Atmos. Oceanic Technol., 11(4), 874–887.

Smith, J. A., Hui, E., Steiner, M., Baeck, M. L., Krajewski, W. F., & Ntelekos, A. A. (2009). Variability of rainfall rate and raindrop size distributions in heavy rain, Water Resour. Res., 45, W04430. https://doi.org/10.1029/2008WR006840.

Sreekanth, T. S., Varikoden, H., Sukumar, N., & Kumar G. M. (2017). Microphysical characteristics of rainfall during different seasons over a coastal tropical station using disdrometer. Hydrol. Process, 31, 2556-2565.

Steiner, M., and J. A. Smith (2000), Reflectivity, Rain Rate, and Kinetic Energy Flux Relationships Based on Raindrop Spectra, J. Appl. Meteorol., 39(11), 1923-1940.

Steiner, M., Houze, R. A., & Yuter, S. E. (1995). Climatological characterization of 3-dimensional storm structure from operational radar and rain-gauge data. J. Appl. Meteorol., 34(9), 1978–2007.

Steiner, M., J. A. Smith, and R. Uijlenhoet (2004), A Microphysical Interpretation of Radar Reflectivity–Rain Rate Relationships, J. Atmos. Sci., 61(10), 1114-1131.

Steiner, M., R. A. Houze, and S. E. Yuter (1995), Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data, J. Appl. Meteor., 34(9), 1978-2007.

Suh, S. H., C. H. You, and D. I. Lee (2016), Climatological Characteristics of Raindrop Size Distributions in Busan, Republic of Korea, Hydrol. Earth Syst. Sci., 20(1), 193-207.

Tang, Q., H. Xiao, C. Guo, and L. Feng (2014), Characteristics of the Raindrop Size Distributions and Their Retrieved Polarimetric Radar Parameters in Northern and Southern China, Atmos. Res., 135-136, 59-75.

Tapiador, F. J., Haddad, Z. S., & Turk, J. (2014). A probabilistic view on raindrop size distribution modeling: A physical interpretation of rain microphysics. J. Hydrometeorol., 15(1), 427–443.

Thurai, M., C. R. Williams, and V. N. Bringi (2014), Examining the Correlations between Drop Size Distribution Parameters Using Data from Two Side-by-side 2D-Video Disdrometers, Atmos. Res., 144, 95-110.

Thurai, M., Gatlin, P. N., & Bringi, V. N. (2016). Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data. Atmos. Res., 169, 416–423.

Thurai, M., V. N. Bringi, and P. T. May (2010), CPOL Radar-Derived Drop Size Distribution Statistics of Stratiform and Convective Rain for Two Regimes in Darwin, Australia, J. Atmos. Oceanic Technol., 27(5), 932-942.

Tokay, A., and D. A. Short (1996), Evidence from Tropical Raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds, J. Appl. Meteorol., 35(3), 355-371.

Tokay, A., Bashor, P. G., Habib, E., & Kasparis, T. (2008). Raindrop size distribution measurements in tropical cyclones. Mon. Weather Rev., 136(5), 1669–1685.

Tokay, A., D. B. Wolff, and W. A. Petersen (2014), Evaluation of the New Version of the Laser-Optical Disdrometer, OTT Parsivel2, J. Atmos. Oceanic Technol., 31(6), 1276-1288.

Tokay, A., Kruger, A., & Krajewski, W. F. (2001). Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteorol., 40(11), 2083–2097.

Tokay, A., P. G. Bashor, E. Habib, and T. Kasparis (2008), Raindrop Size Distribution Measurements in Tropical Cyclones, Mon. Weather Rev., 136(5), 1669-1685.

Tokay, A., Petersen, W. A., Gatlin, P., & Wingo, M. (2013). Comparison of raindrop size distribution measurements by collocated disdrometers, J. Atmos. Oceanic Technol., 30(8), 1672–1690.

Tokay, A., Short, D. A., Williams, C. R., Ecklund, W. L., & Gage, K. S. (1999). Tropical rainfall associated with convective and stratiform clouds: Intercomparison of disdrometer and profiler measurements. J. Appl. Meteor., 38, 302–320.

Tokay, A., W. A. Petersen, P. Gatlin, and M. Wingo (2013), Comparison of Raindrop Size Distribution Measurements by Collocated Disdrometers, J. Atmos. Oceanic Technol., 30(8), 1672-1690.

Tu, J.-Y., and C. Chou (2013), Changes in precipitation frequency and intensity in the vicinity of Taiwan: typhoon versus non-typhoon events, Environ. Res. Lett., 8(1), 014023, doi:10.1088/1748-9326/8/1/014023.

Tu, J.-Y., C. Chou, and P.-S. Chu (2009), The Abrupt Shift of Typhoon Activity in the Vicinity of Taiwan and Its Association with Western North Pacific–East Asian Climate Change, J. Climate, 22(13), 3617-3628.

Tu, J.-Y., C. Chou, P. Huang, and R. Huang (2011), An abrupt increase of intense typhoons over the western North Pacific in early summer, Environ. Res. Lett., 6(3), 034013, doi:10.1088/1748-9326/6/3/034013.

Uijlenhoet, R., and J. N. M. Stricker (1999), A Consistent Rainfall Parameterization Based on the Exponential Raindrop Size Distribution, J. Hydrol., 218(3), 101-127.

Ulbrich, C. W. (1983), Natural Variations in the Analytical Form of the Raindrop Size Distribution, J. Climate Appl. Meteor., 22(10), 1764-1775.

Ulbrich, C. W., and D. Atlas (2007), Microphysics of Raindrop Size Spectra: Tropical Continental and Maritime Storms, J. Appl. Meteor. Climatol., 46(11), 1777-1791.

Ulbrich, C. W., and L. G. Lee (2002), Rainfall Characteristics Associated with the Remnants of Tropical Storm Helene in Upstate South Carolina, Wea. Forecasting, 17(6), 1257-1267.

Van Dijk, A. I. J. M., L. A. Bruijnzeel, and C. J. Rosewell (2002), Rainfall Intensity–Kinetic Energy Relationships: A Critical Literature Appraisal, J. Hydrol., 261(1), 1-23.

Verstraeten, G., J. Poesen, G. Demarée, and C. Salles (2006), Long-term (105 years) Variability in Rain Erosivity as Derived from 10-min Rainfall Depth Data for Ukkel (Brussels, Belgium): Implications for Assessing Soil Erosion Rates, J Geophys. Res., 111(D22), doi:10.1029/2006jd007169.

Vivekanandan, J., Zhang, G., & Brandes, E. (2004). Polarimetric radar estimators based on a constrained gamma drop size distribution model. J. Appl. Meteorol., 43(2), 217–230.

Wainwright, C. E., Dawson, D. T. II, Xue, M., & Zhang, G. (2014). Diagnosing the intercept parameters of the exponential drop size distributions in a single-moment microphysics scheme and impact on supercell storm simulations. J. Appl. Meteor. Climatol., 53(8), 2072–2090.

Waldvogel, A. (1974). The N0 jump of raindrop spectra. J. Atmos. Sci., 31, 1067–1978.

Wang, M., K. Zhao, M. Xue, G. Zhang, S. Liu, L. Wen, and G. Chen (2016), Precipitation Microphysics Characteristics of a Typhoon Matmo (2014) Rainband After Landfall over Eastern China Based on Polarimetric Radar Observations, J. Geophys. Res.,: Atmos. , 121(20), doi:10.1002/2016JD025307.

Wang, M., K. Zhao, W.-C. Lee, and F. Zhang (2018), Microphysical and Kinematic Structure of Convective-Scale Elements in the Inner Rainband of Typhoon Matmo (2014) After Landfall, J. Geophys. Res.: Atmos., 123(12), 6549-6564.

Wang, P. K. (2013). Physics and dynamics of clouds and precipitation, (p. 467). New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511794285
Wang, Y., J. Zhang, A. V. Ryzhkov, and L. Tang (2013), C-Band Polarimetric Radar QPE Based on Specific Differential Propagation Phase for Extreme Typhoon Rainfall, J. Atmos. Oceanic Technol., 30(7), 1354-1370.

Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang (2005), Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment, Science, 309(5742), 1844-1846.

Wen, G., Xiao, H., Yang, H., Bi, Y., and Xu, W. (2017). Characteristics of summer and winter precipitation over northern China. Atmos. Res., 197, 390-406.

Wen, J., Zhao, K., Huang, H., Zhou, B., Yang, Z., Chen, G., and Lee, W.-C. (2017). Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in Eastern China. J. Geophys. Res.: Atmos., 122, 8033–8050.

Wen, L., K. Zhao, G. Chen, M. Wang, B. Zhou, H. Huang, D. Hu, W.-C. Lee, and H. Hu (2018), Drop Size Distribution Characteristics of Seven Typhoons in China, J. Geophys. Res., : Atmos., 123(12), doi:doi:10.1029/2017JD027950.

Williams, C. R., et al. (2014), Describing the Shape of Raindrop Size Distributions Using Uncorrelated Raindrop Mass Spectrum Parameters, J. Appl. Meteor. Climatol., 53(5), 1282-1296.

Wischmeier, W. H. (1959), A Rainfall Erosion Index for a Universal Soil-Loss Equation1, Soil Sci. Soc. Am. J., 23(3), 246-249.

Wischmeier, W. H., and D. D. Smith (1958), Rainfall Energy and its Relationship to Soil Loss, T. Am. Geophys. Un.,, 39(2), 285-291.

Wischmeier, W. H., and D. D. Smith (1978), Predicting Rainfall Erosion Losses - A Guide to Conservation Planning, 62 pp. pp., USDA, Science and Education Administration, Hyattsville, Maryland.

Wu, C.-C., and Y.-H. Kuo (1999), Typhoons Affecting Taiwan: Current Understanding and Future Challenges, Bull. Amer. Meteor. Soc., 80(1), 67-80.

Wu, D., K. Zhao, M. R. Kumjian, X. Chen, H. Huang, M. Wang, A. C. Didlake, Y. Duan, and F. Zhang (2018), Kinematics and Microphysics of Convection in the Outer Rainband of Typhoon Nida (2016) Revealed by Polarimetric Radar, Mon. Weather Rev., 146(7), 2147-2159.

Wu, Q., Z. Ruan, D. Chen, and T. Lian (2015), Diurnal variations of tropical cyclone precipitation in the inner and outer rainbands, J. Geophys. Res. : Atmos., 120(1), 1-11, doi:10.1002/2014JD022190.

Xin, Z., X. Yu, Q. Li, and X. X. Lu (2011), Spatiotemporal Variation in Rainfall Erosivity on the Chinese Loess Plateau During the Period 1956–2008, Reg. Environ. Change, 11(1), 149-159.

Yang, L.-G. (2000), Analysis of afternoon convective precipitation over Taiwan (in Chinese). M.S. thesis, Institute of Atmospheric Physics, National Central University, Taiwan, 120 pp. (Available from Institute of Atmospheric Physics, National Central University, Chung-Li, Taiwan.)

Yen, M.-C., & Chen, T.-C. (2002). A revisit of the East-Asian cold surges. . Meteor. Soc. Japan. Ser. II, 80(5), 1115–1128.

Yin, S., Y. Xie, M. A. Nearing, and C. Wang (2007), Estimation of Rainfall Erosivity Using 5- to 60-minute Fixed-interval Rainfall Data from China, Catena, 70(3), 306-312.

Yuter, S. E., & Houze Jr, R. A. (1995). Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Weather Rev., 123(7), 1941–1963.

Yuter, S. E., D. E. Kingsmill, L. B. Nance, and M. Löffler-Mang (2006), Observations of Precipitation Size and Fall Speed Characteristics within Coexisting Rain and Wet Snow, J. Appl. Meteor. Climatol., 45(10), 1450-1464.

Zeng, S., Riedi, J., Trepte, C. R., Winker, D. M., & Hu, Y.-X. (2014). Study of global cloud droplet number concentration with A-Train satellites. Atmos. Chem. Phys., 14, 7125-7134.

Zhang, G., J. Sun, and E. A. Brandes (2006), Improving Parameterization of Rain Microphysics with Disdrometer and Radar Observations, J. Atmos. Sci., 63(4), 1273-1290.

Zhang, G., J. Vivekanandan, and E. Brandes (2001), A Method for Estimating Rain Rate and Drop Size Distribution From Polarimetric Radar Measurements, IEEE Trans. Geosci. Remote Sens., 39(4), 830-841.

Zhang, G., J. Vivekanandan, E. A. Brandes, R. Meneghini, and T. Kozu (2003), The Shape–Slope Relation in Observed Gamma Raindrop Size Distributions: Statistical Error or Useful Information?, J. Atmos. Oceanic Technol., 20(8), 1106-1119.

Zhang, J., Howard, K., & Gourley, J. J. (2005). Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22(1), 30–42.

Zhang, J., Howard, K., Chang, P-L., Chiu, P. T-K., Chen, C-R., Langston, C. et al.(2009). High-resolution QPE system for Taiwan. In: S.K. Park and L. Xu, Data assimilation for atmospheric, oceanic and hydrological applications. Springer-Verlag Berlin Heidelberg, 147-162.

Zhang, Y., L. Liu, S. Bi, Z. Wu, P. Shen, Z. Ao, C. Chen, and Y. Zhang (2019), Analysis of Dual-Polarimetric Radar Variables and Quantitative Precipitation Estimators for Landfall Typhoons and Squall Lines Based on Disdrometer Data in Southern China, Atmosphere, 10(1), doi:10.3390/atmos10010030.

Zhao, Q., Q. Liu, L. Ma, S. Ding, S. Xu, C. Wu, and P. Liu (2015), Spatiotemporal variations in rainfall erosivity during the period of 1960–2011 in Guangdong Province, southern China, Theor. Appl. Climatol., 128(1-2), 113-128.

Zhao, Q., Q. Liu, L. Ma, S. Ding, S. Xu, C. Wu, P. J. T. Liu, and A. Climatology (2017), Spatiotemporal Variations in Rainfall Erosivity During the Period of 1960–2011 in Guangdong Province, Southern China, Theor. Appl. Climatol., 128(1), 113-128.
指導教授 Prof.林沛練(Prof. Pay-Liam Lin Prof. Pao-Kuan Wang) 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明