博碩士論文 103690604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:18.219.104.129
姓名 艾夏兒(SHAIL VIJETA EKKA)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 台灣河流系統中的鉬同位素:它們對季節效應、岩石類型和風化模式變化的影響
(Molybdenum isotopes in the river system of Taiwan: Their implications on changing seasonal effects, rock types, and weathering patterns)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究調查鉬(Mo)之地球化學特性以及化學風化與侵蝕對鉬同位素造成的同位素分化,以具有活躍構造活動與高海拔的島嶼-台灣作為研究對象。本研究收集並測量了25個主要河流集水區的鉬濃度及其同位素比值,並對河床母岩及河床沉積物進行分析以鑑別鉬的可能來源。於雨季期間,河流中的鉬濃度變化範圍為1.94 ~ 45.09 nM,δ98/95Mo變化範圍為 -0.28‰ ~ +1.60‰,平均值為 +0.95 ± 0.31‰(1SD,n = 42)。在乾季時,鉬濃度變化範圍為2.15 ~ 58.27 nM,δ98/95Mo變化範圍為 -0.23‰ ~ +1.34‰,平均值為 +0.99 ± 0.28‰(1SD,n = 43)。臺灣河流集水區的δ98/95Mo比值顯示僅具有些微季節性的變化。河流中的δ98/95Mo比值比岩石要重。若欲解釋本研究觀察到的鉬同位素分化現象仍具有許多後續的工作,主要是因為這些河流流經不同的岩性地區。河床沉積物中的δ98/95Mo同位素組成與微量元素(如鈮、錳和鈦等)濃度呈負相關。這些微量元素富集在細顆粒的鈦鐵氧化物中,如榍石、金紅石、鈦鐵礦和鈮鐵礦。因此,河床沉積物傾向抓取輕的鉬而使得溶解態的鉬同位素比值變重。再者,臺灣河流向大洋輸出了大量的鉬,並且平均δ98/95Mo為 +1.0‰,比世界河流平均值(約 +0.8‰)重。
除此之外,本研究另一重點為利用鉬同位素作為示蹤劑來探討淡水河(受污染)與立霧溪(未受污染)的河流傳輸過程及化學風化過程。淡水河鉬同位素比值於雨季期間變化為 +0.83‰ 到 +1.50‰,而在乾季期間變化為 +0.54‰ 到 +1.25‰,若去除極端值之影響,則雨季具有較輕的鉬同位素比值。立霧溪的鉬同位素比值變化範圍為 +0.54‰到 +1.30‰,往下游比值有漸增重之趨勢。淡水河中主要的鉬來源為海水、水-岩反應之來源以及人為活動之輸入,各端源之貢獻可以透過MixSIAR混合模式來估算。在立霧溪中,較重鉬同位素比值應為黃鐵礦氧化以及碳酸鹽風化所致,而輕的鉬受到二次生成礦物相(如鐵錳氧化物)抓取而進入河床沉積物。
這些觀察到的現象,可以幫助釐清受化學風化以及人為活動影響下河川鉬同位素比值的變化,並提供現今全球海洋鉬循環更正確之制約。另一方面,本研究之結果也顯示短時間的尺度,如季節性的變化,不會對鉬同位素的循環造成顯著的變化。
總結來說,本論文之分析結果,突顯出鉬同位素應用於探討台灣河流之化學風化過程,以及鉬同位素分化的機制上,提供新的見解與研究的方向。本研究同時也顯示鉬在環境地球化學上示蹤之潛力。
摘要(英) This study investigates the behavior of molybdenum (Mo) geochemistry and the mechanism that controls Mo isotopic fractionation via weathering and erosion in a tectonically active high-stand island, 25 major river catchments in Taiwan was measured for Mo concentration and its isotopic composition. For source identification, bedrock, and riverine bedload sediments were also examined. Riverine Mo concentration ranges from 1.94 to 45.09 nM, and the δ98/95Mo ranges from -0.28‰ to +1.60‰, with an average of +0.95 ± 0.31‰ (1SD, n = 42) for the wet season. In the dry season, Mo concentration ranges from 2.15 to 58.27 nM and the δ98/95Mo from -0.23‰ to +1.34‰, with an average of +0.99 ± 0.28‰ (1SD, n = 43). The δ98/95Mo composition in the Taiwan river catchment shows little seasonal variation. Riverine δ98/95Mo signals are heavier than the bedrock. The observed Mo isotopic fractionation is challenging to explain because these rivers drain across different lithologies. Moreover, the δ98/95Mo isotopic composition in riverine bedload sediments negatively correlates with trace element (e.g., Nb, Mn, and Ti) concentrations. These trace elements are enriched in fine-grain residual Fe-Ti oxides such as titanite, rutile, ilmenite, and niobite. Thus, riverine bedload sediments may act as a light δ98/95Mo sink that makes the riverine dissolved load heavier. Furthermore, Taiwanese rivers discharge a significant Mo flux and a heavier mean δ98/95Mo (+1.00‰) to the oceans than world rivers (~ +0.8‰).
Additionally, this study also focused on Mo isotopes as a source tracer, for which Danshuei (polluted) and Liwu (non-polluted) rivers in Taiwan were chosen to analyze Mo isotopes during weathering and riverine transport. The δ98/95Mo in the Danshuei river ranges from +0.83‰ to +1.50‰ in the wet season and +0.54‰ to +1.25‰ in the dry season, respectively. The wet season is lighter, while the dry season is slightly heavier, with some outliers. The δ98/95Mo ranges from +0.54‰ to +1.30‰ in the Liwu river, becoming heavier downstream. Three Mo sources are identified in the Danshuei river using the MixSIAR model: seawater intrusion, rock–water interaction, and anthropogenic inputs. The heavy δ98/95Mo signature in the Liwu river is likely driven by pyrite oxidation and carbonate weathering, while light δ98/95Mo is sequestered into secondary mineral phases (Fe-Mn oxides) in bedload sediments.
Furthermore, these findings have significant implications for weathering-controlled riverine Mo and anthropogenic Mo sources delivered to the ocean and will help better constrain the global Mo cycling in modern seawaters, while short-term seasonal changes tend to show an insignificant effect.
Overall this thesis highlights the application of Mo-isotope systematics as a promising proxy to understand the Mo isotopic fractionation mechanism during continental weathering in small mountainous rivers (SMRs) of Taiwan. In addition, it also emphasizes source tracing applications of Mo in environmental geochemistry.
關鍵字(中) ★ 鉬同位素 關鍵字(英) ★ Molybdenum isotopes
論文目次 Abstract (in Chinese)……………………………………………………………………... i
Abstract (in English)……………………………………………………………………... iii
Acknowledgments……………………………………………………………………….....v
List of Contents…………………………………………………………………………… ix
List of Tables……………………………………………………………………………... xii
List of Figures………………………………………………………………………….…. xv
List of Abbreviations and Symbols…………………………………………………….. xxiii
Chapter I: Introduction……………………………………………………………….…01
1.1 Background and motivation…………………………………………………………...01
1.2 Introduction to molybdenum geochemistry…………………………………………...05
1.2.1 Mo isotopes in the ocean………………………………………………………...07
1.2.2 Molybdenum isotopes as a tracer for continental weathering………………..…10
1.3 Aim and Objectives……………………………………………………………..……..11
1.4 Outline of the thesis……………………………………………………………...…….11
Chapter II: Study Area…………………………………………………………..………15
2.1 An introduction to tectonic background of Taiwan……………………………...……..15
2.2 Geological setting of Taiwan…………………………………………………………...17
2.3 Climate and land cover………………………………………………………………....20
2.4 Geological background of Danshuei and Liwu river…………………………………...23
Chapter III: Methodology and Instrumentation……………………………………….27
3.1 Sample collection………………………………………………………………………27
3.2 Sample preparation……………………………………………………………………..31
3.3 Analytical methods……………………………………………………………………..31
3.3.1 Major and trace element determination………………………………………....31
3.3.2 Chemical Separation of Mo……………………………………………………..32
3.3.3 Double-Spike design………………………………………………………….....36
3.3.4 Instrumentation: An overview of MC-ICP-MS………………………..……..…40
3.3.5 Mo isotope analysis…………………………………………………………..…43
3.4 MixSIAR model……………………………………………………………………..…47
Chapter IV: Results and Discussion – 1……………………………………………..….51
Riverine molybdenum isotopic fractionation in small mountainous rivers of Taiwan: The effect of chemical weathering and lithology………………………………..……....51
4.1 Overview…………………………………………………………………….…………51
4.2 Major ion concentration……………………………………………………..…………51
4.3 Seasonal and spatial variability of dissolved δ98/95Mo in Taiwan rivers……………....57
4.4 Effect of sulfide weathering on dissolved δ98/95Mo in Taiwan rivers……………….…67
4.4.1 Effect of sulfide weathering on dissolved δ98/95Mo in Western Foothill rivers….70
4.5 Influence of anthropogenic Mo on Coastal Plain rivers……………………………….73
4.6 Molybdenum as a source–to–sink tracer in Taiwan…………………………..…….....78
4.6.1 Mo isotopic fractionation during source rock weathering…………………….....78
4.6.2 Mo isotopic fractionation during riverine transport……………………..……….83
4.6.3 Comparison of riverine δ98/95Mo signature and Mo flux in Taiwan and global rivers……………………………………………………………………….....…..90
4.7 Summary…………………………………………………………………………….….97

Chapter V: Results and Discussion – 2………………………………………………….99
Molybdenum isotopic fingerprints in Taiwan rivers: Natural versus Anthropogenic sources…………………………………………………………………………………..….99
5.1 Overview…………………………………………………………………………..........99
5.2 General characteristics of major ions in the dissolved load…………………………...100
5.3 Atmospheric supply……………………………………………………………………106
5.4 Silicate and carbonate weathering determination from major ions………………..…..107
5.5 Behavior of Mo isotopic composition and its concentration during weathering and riverine transport……………………………………………………………………....109
5.6 Evidence of anthropogenic Mo in Danshuei river………………………………….…120
5.7 Contribution of natural and anthropogenic sources in Danshuei river catchment…….123
5.8 Summary………………………………………………………………………………131

Chapter VI: Conclusions and future implications………………………………….....133
6.1 Riverine molybdenum isotopic fractionation in small mountainous rivers of Taiwan: The effect of chemical weathering and lithology………………………………….……133
6.2 Molybdenum isotopic fingerprints in Taiwan rivers: Natural versus Anthropogenic sources………………………………………………………………………………….....134
6.3 Future scope/work of the thesis…………………………………………………….....136
Vita………………………………………………………………………………………..137
Publications……………………………………………………………………………….139
Chapter VII: Bibliography……………………………………………………………...141
參考文獻 1. Ahnert, F., 1970. Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins. American Journal of Science, 268(3): 243-263.
2. Anbar, A.D., 2004. Molybdenum Stable Isotopes: Observations, Interpretations and Directions. Reviews in Mineralogy & Geochemistry, 55: 429-454.
3. Anbar, A.D., Rouxel, O., 2007. Metal Stable Isotopes in Paleoceanography. Annual Review of Earth and Planetary Sciences, 35(1): 717-746.
4. Archer, C., Vance, D., 2008. The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans. Nature Geoscience, 1(9): 597-600.
5. Barling, J., Anbar, A.D., 2004. Molybdenum isotope fractionation during adsorption by manganese oxides. Earth and Planetary Science Letters, 217(3): 315-329.
6. Barling, J., Arnold, G.L., Anbar, A.D., 2001. Natural mass-dependent variations in the isotopic composition of molybdenum. Earth and Planetary Science Letters, 193(3): 447-457.
7. Bea, F., Pereira, M., Stroh, A., 1994. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemical Geology, 117(1-4): 291-312.
8. Beaumont, C., Muñoz, J.A., Hamilton, J., Fullsack, P., 2000. Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. Journal of Geophysical Research: Solid Earth, 105(B4): 8121-8145.
9. Berner, R.A., 1991. A model for atmospheric CO 2 over Phanerozoic time. American Journal of Science, 291(4): 339-376.
10. Berner, R.A., Lasaga, A.C., Garrels, R.M., 1983. Carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci.;(United States), 283(7).
11. Blattmann, T.M. et al., 2019. Sulphuric acid-mediated weathering on Taiwan buffers geological atmospheric carbon sinks. Scientific Reports, 9(1): 2945.
12. Bluth, G.J.S., Kump, L.R., 1994. Lithologic and climatologic controls of river chemistry. Geochimica et Cosmochimica Acta, 58(10): 2341-2359.
13. Calmels, D. et al., 2011. Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth and Planetary Science Letters, 303(1): 48-58.
14. Chang, C.P., Angelier, J., Huang, C.Y., 2000. Origin and evolution of a mélange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophysics, 325(1): 43-62.
15. Chao, H.-C., You, C.-F., Wang, B.-S., Chung, C.-H., Huang, K.-F., 2011. Boron isotopic composition of mud volcano fluids: Implications for fluid migration in shallow subduction zones. Earth and Planetary Science Letters, 305(1): 32-44.
16. Chen, C.-T., Chan, Y.-C., Lu, C.-Y., Simoes, M., Beyssac, O., 2011. Nappe structure revealed by thermal constraints in the Taiwan metamorphic belt. Terra Nova, 23(2): 85-91.
17. Chen, C.-Y., Willett, S.D., 2016. Graphical methods of river profile analysis to unravel drainage area change, uplift and erodibility contrasts in the Central Range of Taiwan. Earth Surface Processes and Landforms, 41(15): 2223-2238.
18. Chen, C., 2000. Geological map of Taiwan, scale 1: 500,000. Central Geological Survey, Taipei.
19. Chen, C.H., Chung, S.H., Huang, S.T., 1993. Carbonate minerals from the Central Range of Taiwan. Special publication of the Central Geological Survey, MOEA, 7: 51-77.
20. Chen, Z.-S., Hseu, Z.-Y., Tsai, C.-C., 2015. The soils of Taiwan. Springer.
21. Cheng, M., Li, C., Zhou, L., Xie, S., 2015. Mo marine geochemistry and reconstruction of ancient ocean redox states. Science China Earth Sciences, 58(12): 2123-2133.
22. Chetelat, B. et al., 2008. Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering. Geochimica et Cosmochimica Acta, 72(17): 4254-4277.
23. Chu, H.-Y., You, C.-F., 2007. Dissolved constituents and Sr isotopes in river waters from a mountainous island – The Danshuei drainage system in northern Taiwan. Applied Geochemistry, 22(8): 1701-1714.
24. Chung, C.-H., You, C.-F., Chu, H.-Y., 2009. Weathering sources in the Gaoping (Kaoping) river catchments, southwestern Taiwan: Insights from major elements, Sr isotopes, and rare earth elements. Journal of Marine Systems, 76(4): 433-443.
25. Clark, M.B., Fisher, D.M., Lu, C.Y., Chen, C.H., 1993. Kinematic analyses of the Hsüehshan Range, Taiwan: a large‐scale pop‐up structure. Tectonics, 12(1): 205-217.
26. Collier, R.W., 1985. Molybdenum in the Northeast Pacific Ocean. Limnology and Oceanography, 30(6): 1351-1354.
27. Dadson, S.J. et al., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967): 648-51.
28. Dahl, T.W. et al., 2010. The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland. Geochimica et Cosmochimica Acta, 74(1): 144-163.
29. Das, A., Chung, C.-H., You, C.-F., 2012. Disproportionately high rates of sulfide oxidation from mountainous river basins of Taiwan orogeny: Sulfur isotope evidence. Geophysical Research Letters, 39(12).
30. Deng, K., Wittmann, H., Yang, S., von Blanckenburg, F., 2021. The Upper Limit of Denudation Rate Measurement From Cosmogenic 10Be(Meteoric)/9Be Ratios in Taiwan. Journal of Geophysical Research: Earth Surface, 126(10): e2021JF006221.
31. Deshpande, T., Greenland, D., Quirk, J., 1968. Changes in soil properties associated with the removal of iron and aluminium oxides. Journal of Soil Science, 19(1): 108-122.
32. Dickson, A.J., Cohen, A.S., 2012. A molybdenum isotope record of Eocene Thermal Maximum 2: Implications for global ocean redox during the early Eocene. Paleoceanography, 27(3).
33. Dodson, M.H., 1963. A theoretical study of the use of internal standards for precise isotopic analysis by the surface ionization technique: Part I - General first-order algebraic solutions. Journal of Scientific Instruments, 40(6): 289.
34. Dunn, T., Sen, C., 1994. Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and experimental study. Geochimica et Cosmochimica Acta, 58(2): 717-733.
35. Edmond, J., Palmer, M., Measures, C., Grant, B., Stallard, R., 1995. The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia, and Brazil. Geochimica et Cosmochimica Acta, 59(16): 3301-3325.
36. Ekka, S.V., Liang, Y.-H., Huang, K.-F., Huang, J.-C., Lee, D.-C., 2023a. Riverine molybdenum isotopic fractionation in small mountainous rivers of Taiwan: The effect of chemical weathering and lithology. Chemical Geology, 620: 121349.
37. Ekka, S.V., Liang, Y.-H., Huang, K.-F., Lee, D.-C., 2023b. Molybdenum Isotopic Fingerprints in Taiwan Rivers: Natural versus Anthropogenic Sources. Water, 15(10): 1873.
38. Emberson, R., Hovius, N., Galy, A., Marc, O., 2016. Oxidation of sulfides and rapid weathering in recent landslides. Earth Surface Dynamics, 4(3): 727-742.
39. Emerson, S.R., Huested, S.S., 1991. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry, 34(3): 177-196.
40. Etemad-Shahidi, A., Shahkolahi, A., Liu, W.-C., 2010. Modeling of Hydrodynamics and Cohesive Sediment Processes in an Estuarine System: Study Case in Danshui River. Environmental Modeling & Assessment, 15(4): 261-271.
41. Ewart, A., Griffin, W., 1994. Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chemical Geology, 117(1-4): 251-284.
42. Feng, M. et al., 2022. The role of snowmelt discharge to runoff of an alpine watershed: Evidence from water stable isotopes. Journal of Hydrology, 604: 127209.
43. France-Lanord, C., Derry, L.A., 1997. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 390(6655): 65-67.
44. Gaillardet, J., Dupré, B., Louvat, P., Allegre, C., 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1-4): 3-30.
45. Garzanti, E. et al., 2013. Weathering and relative durability of detrital minerals in equatorial climate: sand petrology and geochemistry in the East African Rift. The Journal of Geology, 121(6): 547-580.
46. Garzanti, E., Resentini, A., 2016. Provenance control on chemical indices of weathering (Taiwan river sands). Sedimentary Geology, 336: 81-95.
47. Goldberg, S., 1989. Interaction of aluminum and iron oxides and clay minerals and their effect on soil physical properties: a review. Communications in Soil Science and Plant Analysis, 20(11-12): 1181-1207.
48. Goldberg, S., Forster, H.S., Godfrey, C.L., 1996. Molybdenum Adsorption on Oxides, Clay Minerals, and Soils. Soil Science Society of America Journal, 60(2): 425-432.
49. Goldberg, T., Archer, C., Vance, D., Poulton, S.W., 2009. Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. Geochimica et Cosmochimica Acta, 73: 6502-6516.
50. Goldberg, T. et al., 2013. Resolution of inter-laboratory discrepancies in Mo isotope data: an intercalibration. Journal of Analytical Atomic Spectrometry, 28(5): 724-735.
51. Greaney, A.T. et al., 2018. Geochemistry of molybdenum in the continental crust. Geochimica et Cosmochimica Acta, 238: 36-54.
52. Greber, N.D., Siebert, C., Nägler, T.F., Pettke, T., 2012. δ98/95Mo values and Molybdenum Concentration Data for NIST SRM 610, 612 and 3134: Towards a Common Protocol for Reporting Mo Data. Geostandards and Geoanalytical Research, 36(3): 291-300.
53. Gurumurthy, G.P., Tripti, M., Riotte, J., Prakyath, R., Balakrishna, K., 2017. Impact of water-particle interactions on molybdenum budget in humid tropical rivers and estuaries: insights from Nethravati, Gurupur and Mandovi river systems. Chemical Geology, 450: 44-58.
54. Harkness, J.S. et al., 2017. Naturally Occurring versus Anthropogenic Sources of Elevated Molybdenum in Groundwater: Evidence for Geogenic Contamination from Southeast Wisconsin, United States. Environmental Science & Technology, 51(21): 12190-12199.
55. Hartshorn, K., Hovius, N., Dade, W.B., Slingerland, R.L., 2002. Climate-driven bedrock incision in an active mountain belt. Science, 297(5589): 2036-8.
56. Helz, G.R., Vorlicek, T.P., 2019. Precipitation of molybdenum from euxinic waters and the role of organic matter. Chemical Geology, 509: 178-193.
57. Hemingway, J.D. et al., 2018. Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils. Science, 360(6385): 209-212.
58. Hilton, R.G., Gaillardet, J., Calmels, D., Birck, J.-L., 2014. Geological respiration of a mountain belt revealed by the trace element rhenium. Earth and Planetary Science Letters, 403: 27-36.
59. Ho, C., 1986a. Taiwan Geology. Central Geological Survey, Ministry of Economic Affairs, Taipei (in Chinese).
60. Ho, C., 1988. An introduction to the geology of Taiwan. Central Geological Survey Ministry of Economic Affairs Taiwan.
61. Ho, C.S., 1986b. A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1): 1-16.
62. Horan, K. et al., 2020. Unravelling the controls on the molybdenum isotope ratios of river waters. Geochemical Perspectives Letters, 13: 1-6.
63. Horowitz, A.J., Elrick, K.A., 1987. The relation of stream sediment surface area, grain size and composition to trace element chemistry. Applied Geochemistry, 2(4): 437-451.
64. Hovius, N. et al., 2011. Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth and Planetary Science Letters, 304(3): 347-355.
65. Huang, M.-H., Bürgmann, R., Hu, J.-C., 2016. Fifteen years of surface deformation in Western Taiwan: Insight from SAR interferometry. Tectonophysics, 692: 252-264.
66. Huang, X., Sillanpää, M., Gjessing, E.T., Vogt, R.D., 2009. Water quality in the Tibetan Plateau: major ions and trace elements in the headwaters of four major Asian rivers. Science of Total Environment, 407(24): 6242-54.
67. Jacobson, A.D., Blum, J.D., Chamberlain, C.P., Craw, D., Koons, P.O., 2003. Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochimica et Cosmochimica Acta, 67(1): 29-46.
68. Jacobson, A.D., Blum, J.D., Walter, L.M., 2002. Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes: insights from the carbonate geochemistry of stream waters. Geochimica et Cosmochimica Acta, 66(19): 3417-3429.
69. Jiann, K.-T., Wen, L.-S., Santschi, P.H., 2005. Trace metal (Cd, Cu, Ni and Pb) partitioning, affinities and removal in the Danshuei River estuary, a macro-tidal, temporally anoxic estuary in Taiwan. Marine Chemistry, 96(3-4): 293-313.
70. Kao, S.J., Milliman, J.D., 2008. Water and Sediment Discharge from Small Mountainous Rivers, Taiwan: The Roles of Lithology, Episodic Events, and Human Activities. The Journal of Geology, 116(5): 431-448.
71. Kashiwabara, T., Takahashi, Y., Tanimizu, M., Usui, A., 2011. Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides. Geochimica et Cosmochimica Acta, 75(19): 5762-5784.
72. Kendall, B., Creaser, R.A., Gordon, G.W., Anbar, A.D., 2009. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia. Geochimica et Cosmochimica Acta, 73: 2534-2558.
73. Kendall, B., Dahl, T.W., Anbar, A.D., 2017. The Stable Isotope Geochemistry of Molybdenum. Reviews in Mineralogy and Geochemistry, 82(1): 683-732.
74. King, E.K., Perakis, S.S., Pett-Ridge, J.C., 2018. Molybdenum isotope fractionation during adsorption to organic matter. Geochimica et Cosmochimica Acta, 222: 584-598.
75. King, E.K., Thompson, A., Chadwick, O.A., Pett-Ridge, J.C., 2016. Molybdenum sources and isotopic composition during early stages of pedogenesis along a basaltic climate transect. Chemical Geology, 445: 54-67.
76. Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15: 259-263.
77. Krasilnikov, P., Arnold, R., Marti, J.-J.I., Shoba, S., 2009. A handbook of soil terminology, correlation and classification. Earthscan.
78. Laeter, J.R.d. et al., 2003. Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure and Applied Chemistry, 75(6): 683-800.
79. Lan, C.Y. et al., 1991. Geochemical and isotopic study of gneiss-associated metabasites at the Central Range, Taiwan. Proc. Geol. Sot. China, 34: 233-266.
80. Larsen, L.M., 1979. Distribution of REE and other trace elements between phenocrysts and peralkaline undersaturated magmas, exemplified by rocks from the Gardar igneous province, south Greenland. Lithos, 12(4): 303-315.
81. Laskar, A.H., Yui, T.-F., Liang, M.-C., 2016. Clumped isotope composition of marbles from the Backbone Range of Taiwan. Terra Nova, 28(4): 265-270.
82. Lee, T.-Y. et al., 2015. Magnified Sediment Export of Small Mountainous Rivers in Taiwan: Chain Reactions from Increased Rainfall Intensity under Global Warming. PLOS ONE, 10(9): e0138283.
83. Lee, T.Y. et al., 2014. Speciation and dynamics of dissolved inorganic nitrogen export in the Danshui River, Taiwan. Biogeosciences, 11(19): 5307-5321.
84. Lee, W.-S. et al., 2020. Interaction among Controlling Factors on Riverine DIN Export in Small Mountainous Rivers of Taiwan: Inseparable Human-Landscape System. Water, 12(11): 2981.
85. Li, C. et al., 2012. Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers. Chinese Science Bulletin, 57(6): 673-681.
86. Li, Y.-H., 1976. Denudation of Taiwan island since the Pliocene epoch. Geology, 4(2): 105-107.
87. Li, Y.-H., Chen, C., Hung, J.-J., 1997. Aquatic chemistry of lakes and reservoirs in Taiwan. TAO, 8(4): 405.
88. Liang, Y.-H. et al., 2017. Molybdenum isotope fractionation in the mantle. Geochimica et Cosmochimica Acta, 199: 91-111.
89. Liermann, L.J. et al., 2011. Extent and isotopic composition of Fe and Mo release from two Pennsylvania shales in the presence of organic ligands and bacteria. Chemical Geology, 281(3): 167-180.
90. Lin, H.J. et al., 2007. A trophic model for the Danshuei River Estuary, a hypoxic estuary in northern Taiwan. Marine Pollution Bulletin, 54(11): 1789-800.
91. Liu, C.C., Yu, S.B., 1990. Vertical Crustal Movements in Eastern Taiwan and Their Tectonic Implications. Tectonophysics, 183(1-4): 111-119.
92. Liu, Y.-C. et al., 2012. Boron sources and transport mechanisms in river waters collected from southwestern Taiwan: Isotopic evidence. Journal of Asian Earth Sciences, 58: 16-23.
93. Liu, Z. et al., 2008. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology, 255(3): 149-155.
94. Longman, J., Struve, T., Pahnke, K., 2022. Spatial and Temporal Trends in Mineral Dust Provenance in the South Pacific—Evidence From Mixing Models. Paleoceanography and Paleoclimatology, 37(2): e2021PA004356.
95. Longman, J. et al., 2018. Quantitative assessment of Pb sources in isotopic mixtures using a Bayesian mixing model. Scientific reports, 8(1): 6154.
96. Lou, J.-Y. et al., 2014. Comparison of subtropical surface water chemistry between the large Pearl River in China and small mountainous rivers in Taiwan. Journal of Asian Earth Sciences, 79: 182-190.
97. Lupker, M. et al., 2011. A Rouse‐based method to integrate the chemical composition of river sediments: Application to the Ganga basin. Journal of Geophysical Research: Earth Surface, 116(F4).
98. Maher, K., Chamberlain, C.P., 2014. Hydrologic Regulation of Chemical Weathering and the Geologic Carbon Cycle. Science, 343(6178): 1502-1504.
99. Malinovsky, D., Baxter, D.C., Rodushkin, I., 2007. Ion-Specific Isotopic Fractionation of Molybdenum during Diffusion in Aqueous Solutions. Environmental Science & Technology, 41(5): 1596-1600.
100. Marks, J.A., Perakis, S.S., King, E.K., Pett-Ridge, J., 2015. Soil organic matter regulates molybdenum storage and mobility in forests. Biogeochemistry, 125(2): 167-183.
101. McManus, J., Nägler, T.F., Siebert, C., Wheat, C.G., Hammond, D.E., 2002. Oceanic molybdenum isotope fractionation: Diagenesis and hydrothermal ridge-flank alteration. Geochemistry, Geophysics, Geosystems, 3(12): 1-9.
102. Meybeck, M., 1983. Atmospheric inputs and river transport of dissolved substances. Dissolved loads of rivers and surface water quantity/quality relationships: 173-192.
103. Meyer, K.J., Carey, A.E., You, C.-F., 2017. Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan. Geochimica et Cosmochimica Acta, 215: 404-420.
104. Miller, C.A., Peucker-Ehrenbrink, B., Walker, B.D., Marcantonio, F., 2011. Re-assessing the surface cycling of molybdenum and rhenium. Geochimica et Cosmochimica Acta, 75(22): 7146-7179.
105. Milliman, J.D., Syvitski, J.P.M., 1992. Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. The Journal of Geology, 100(5): 525-544.
106. Montgomery, D.R., Huang, M.Y.F., Huang, A.Y.L., 2014. Regional soil erosion in response to land use and increased typhoon frequency and intensity, Taiwan. Quaternary Research, 81(1): 15-20.
107. Moon, S., Chamberlain, C.P., Hilley, G.E., 2014. New estimates of silicate weathering rates and their uncertainties in global rivers. Geochimica et Cosmochimica Acta, 134: 257-274.
108. Nägler, T.F. et al., 2014. Proposal for an international molybdenum isotope measurement standard and data representation. Geostandards and Geoanalytical Research, 38(2): 149-151.
109. Nayak, K., Garzanti, E., Lin, A.T.-S., Castelltort, S., 2022. Taiwan river muds from source to sink: Provenance control, inherited weathering, and offshore dispersal pathways. Sedimentary Geology, 438: 106199.
110. Nayak, K. et al., 2021. Clay-mineral distribution in recent deep-sea sediments around Taiwan: Implications for sediment dispersal processes. Tectonophysics, 814: 228974.
111. Neely, R.A. et al., 2018. Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland. Earth and Planetary Science Letters, 486: 108-118.
112. Négrel, P., Allègre, C.J., Dupré, B., Lewin, E., 1993. Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: The Congo Basin case. Earth and Planetary Science Letters, 120(1): 59-76.
113. Neubert, N. et al., 2011. The molybdenum isotopic composition in river water: Constraints from small catchments. Earth and Planetary Science Letters, 304(1): 180-190.
114. Okamoto, K., 1979. GEOCHEMICAL STUDY ON MAGMATIC DIFFERENTIATION OF ASAMA VOLCANO, CENTRAL JAPAN. The Journal of the Geological Society of Japan, 85(8): 525-535.
115. Parnell, A.C. et al., 2013. Bayesian stable isotope mixing models. Environmetrics, 24(6): 387-399.
116. Pearce, C.R., Burton, K.W., von Strandmann, P.A.E.P., James, R.H., Gíslason, S.R., 2010. Molybdenum isotope behaviour accompanying weathering and riverine transport in a basaltic terrain. Earth and Planetary Science Letters, 295(1): 104-114.
117. Pi, J.-L., You, C.-F., Horng, C.-S., Yang, H.-J., Chen, C.-J., 2019. The redistribution of B concentration and its isotopes during low-grade metamorphism: Observations in metapelites from the Central Range, Taiwan. Chemical Geology, 520: 1-10.
118. Plimer, I.R., Elliott, S.M., 1979. The use of Rb/Sr ratios as a guide to mineralization. Journal of Geochemical Exploration, 12: 21-34.
119. Pogge von Strandmann, P.A.E. et al., 2006. Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain. Earth and Planetary Science Letters, 251(1): 134-147.
120. Pogge von Strandmann, P.A.E. et al., 2008. The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain. Earth and Planetary Science Letters, 276(1): 187-197.
121. Poulson, R.L., Siebert, C., McManus, J., Berelson, W.M., 2006. Authigenic molybdenum isotope signatures in marine sediments. Geology, 34(8): 617-620.
122. Putri, M., Lou, C.-H., Syai’in, M., Ou, S.-H., Wang, Y.-C., 2018. Long-Term River Water Quality Trends and Pollution Source Apportionment in Taiwan. Water, 10(10).
123. Rahaman, W., Goswami, V., Singh, S.K., Rai, V.K., 2014. Molybdenum isotopes in two Indian estuaries: Mixing characteristics and input to oceans. Geochimica et Cosmochimica Acta, 141: 407-422.
124. Rai, S.K., Singh, S.K., Krishnaswami, S., 2010. Chemical weathering in the plain and peninsular sub-basins of the Ganga: Impact on major ion chemistry and elemental fluxes. Geochimica et Cosmochimica Acta, 74(8): 2340-2355.
125. Raymo, M.E., Ruddiman, W.F., 1992. Tectonic forcing of late Cenozoic climate. Nature, 359(6391): 117-122.
126. Rehkämper, M., Schönbächler, M., Stirling, C.H., 2001. Multiple Collector ICP-MS: Introduction to Instrumentation, Measurement Techniques and Analytical Capabilities. Geostandards Newsletter, 25(1): 23-40.
127. Resentini, A., Goren, L., Castelltort, S., Garzanti, E., 2017. Partitioning sediment flux by provenance and tracing erosion patterns in Taiwan. Journal of Geophysical Research: Earth Surface, 122(7): 1430-1454.
128. Revels, B.N., Rickli, J., Moura, C.A.V., Vance, D., 2021. The riverine flux of molybdenum and its isotopes to the ocean: Weathering processes and dissolved-particulate partitioning in the Amazon basin. Earth and Planetary Science Letters, 559: 116773.
129. Riebe, C.S., Kirchner, J.W., Finkel, R.C., 2003. Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochimica et Cosmochimica Acta, 67(22): 4411-4427.
130. Rudge, J.F., Reynolds, B.C., Bourdon, B., 2009. The double spike toolbox. Chemical Geology, 265(3): 420-431.
131. Rudnick, R.L., Gao, S., 2014. 4.1 - Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry (Second Edition). Elsevier, Oxford, pp. 1-51.
132. Sarmiento, J.L., Gruber, N., 2006. Ocean Biogeochemical Dynamics. Princeton university press, 503 pp.
133. Schauble, E.A., 2004. Applying stable isotope fractionation theory to new systems. Reviews in mineralogy and geochemistry, 55(1): 65-111.
134. Selvaraj, K., Chen, C.-T.A., 2006. Moderate chemical weathering of subtropical Taiwan: constraints from solid-phase geochemistry of sediments and sedimentary rocks. The Journal of Geology, 114(1): 101-116.
135. Seno, T., Stein, S., Gripp, A.E., 1993. A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data. Journal of Geophysical Research: Solid Earth, 98(B10): 17941-17948.
136. Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, 32(5): 751-767.
137. Shao, Y., Klose, M., Wyrwoll, K.-H., 2013. Recent global dust trend and connections to climate forcing. Journal of Geophysical Research: Atmospheres, 118(19): 11,107-11,118.
138. Shiau, J.-T., Wu, P.-S., 2021. Nonstationary Distributional Changes of Annual Rainfall Indices in Taiwan. Asia-Pacific Journal of Atmospheric Sciences, 57(3): 435-450.
139. Shih, Y.-T., Lee, T.-Y., Huang, J.-C., Kao, S.-J., Chang, 2016. Apportioning riverine DIN load to export coefficients of land uses in an urbanized watershed. Science of The Total Environment, 560-561: 1-11.
140. Shyu, J.B.H., Sieh, K., Chen, Y.-G., Liu, C.-S., 2005. Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth, 110(B8).
141. Siebert, C., Nägler, T.F., Kramers, J.D., 2001. Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochemistry, Geophysics, Geosystems, 2(7).
142. Siebert, C., Nägler, T.F., von Blanckenburg, F., Kramers, J.D., 2003. Molybdenum isotope records as a potential new proxy for paleoceanography. Earth and Planetary Science Letters, 211(1-2): 159-171.
143. Siebert, C. et al., 2015. Molybdenum isotope fractionation in soils: Influence of redox conditions, organic matter, and atmospheric inputs. Geochimica et Cosmochimica Acta, 162: 1-24.
144. Skierszkan, E. et al., 2017. Molybdenum (Mo) stable isotopic variations as indicators of Mo attenuation in mine waste-rock drainage. Applied Geochemistry, 87: 71-83.
145. Stallard, R., Edmond, J., 1981. Geochemistry of the Amazon: 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. Journal of Geophysical Research: Oceans, 86(C10): 9844-9858.
146. Stallard, R.F., Edmond, J.M., 1983. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research: Oceans, 88(C14): 9671-9688.
147. Stock, B.C. et al., 2018. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ, 6: e5096.
148. Stock, B.C., Semmens, B.X., 2016. Unifying error structures in commonly used biotracer mixing models. Ecology, 97(10): 2562-2569.
149. Su, N. et al., 2021. Radiogenic and stable Sr isotopes constrain weathering processes in rapidly eroding Taiwan catchments. Earth and Planetary Science Letters, 576: 117235.
150. Suppe, J., 1984. Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan. Mem. Geol. Soc. China, 6: 21-33.
151. Tanaka, K., Watanabe, N., 2015. Size distribution of alkali elements in riverbed sediment and its relevance to fractionation of alkali elements during chemical weathering. Chemical Geology, 411: 12-18.
152. Taylor, S.R., McLennan, S.M., 1985. The continental crust: its composition and evolution. Blackwell, Oxford, 349.
153. Teng, F.-Z., Dauphas, N., Watkins, J.M., 2017. Non-Traditional Stable Isotopes: Retrospective and Prospective. Reviews in Mineralogy and Geochemistry, 82(1): 1-26.
154. Teng, L.S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1): 57-76.
155. Thoby, M. et al., 2019. Global importance of oxic molybdenum sinks prior to 2.6 Ga revealed by the Mo isotope composition of Precambrian carbonates. Geology, 47(6): 559-562.
156. Tranter, M., Brown, G., Raiswell, R., Sharp, M., Gurnell, A., 1993. A conceptual model of solute acquisition by Alpine glacial meltwaters. Journal of Glaciology, 39(133): 573-581.
157. Tsai, K.-S., Chang, Y.-M., Kao, J.C., Lin, K.-L., 2016. Groundwater molybdenum from emerging industries in Taiwan. Bulletin of environmental contamination and toxicology, 96: 102-106.
158. Tsutsumi, Y., Lee, C., Shen, J., Lan, C., Yokoyama, K., 2006. Stability and Dissolution of heavy minerals in the Neogene-Pleistocene Sandstones from Western Foothills, Taiwan. Memoirs Natl. Sci. Museum (Tokyo), 44: 195-204.
159. Urey, H.C., Korff, S.A., 1952. The Planets: Their Origin and Development. Physics Today, 5(8): 12-12.
160. Voegelin, A.R., Nägler, T.F., Beukes, N.J., Lacassie, J.P., 2010. Molybdenum isotopes in late Archean carbonate rocks: Implications for early Earth oxygenation. Precambrian Research, 182(1-2): 70-82.
161. Voegelin, A.R. et al., 2012. The impact of igneous bedrock weathering on the Mo isotopic composition of stream waters: Natural samples and laboratory experiments. Geochimica et Cosmochimica Acta, 86: 150-165.
162. Voegelin, A.R., Pettke, T., Greber, N.D., von Niederhäusern, B., Nägler, T.F., 2014. Magma differentiation fractionates Mo isotope ratios: Evidence from the Kos Plateau Tuff (Aegean Arc). Lithos, 190-191: 440-448.
163. Vorlicek, T.P., Kahn, M.D., Kasuya, Y., Helz, G.R., 2004. Capture of molybdenum in pyrite-forming sediments: role of ligand-induced reduction by polysulfides 1 1Associate editor: M. Goldhaber. Geochimica et Cosmochimica Acta, 68(3): 547-556.
164. Wang, R.-M., You, C.-F., Chu, H.-Y., Hung, J.-J., 2009. Seasonal variability of dissolved major and trace elements in the Gaoping (Kaoping) River Estuary, Southwestern Taiwan. Journal of Marine Systems, 76(4): 444-456.
165. Wang, Z. et al., 2015. Chemical weathering controls on variations in the molybdenum isotopic composition of river water: Evidence from large rivers in China. Chemical Geology, 410: 201-212.
166. Wang, Z. et al., 2018. Fe (hydro) oxide controls Mo isotope fractionation during the weathering of granite. Geochimica et Cosmochimica Acta, 226: 1-17.
167. Wang, Z. et al., 2020. Effect of Fe–Ti oxides on Mo isotopic variations in lateritic weathering profiles of basalt. Geochimica et Cosmochimica Acta, 286: 380-403.
168. Wasylenki, L.E., Rolfe, B.A., Weeks, C.L., Spiro, T.G., Anbar, A.D., 2008. Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochimica et Cosmochimica Acta, 72(24): 5997-6005.
169. Wen, H., Carignan, J., Cloquet, C., Zhu, X., Zhang, Y., 2010. Isotopic delta values of molybdenum standard reference and prepared solutions measured by MC-ICP-MS: Proposition for delta zero and secondary references. Journal of Analytical Atomic Spectrometry, 25(5): 716-721.
170. West, A.J., Galy, A., Bickle, M., 2005. Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235(1): 211-228.
171. White, A.F., Blum, A.E., 1995. Effects of climate on chemical_ weathering in watersheds. Geochimica et Cosmochimica Acta, 59(9): 1729-1747.
172. White, A.F., Bullen, T.D., Vivit, D.V., Schulz, M.S., Clow, D.W., 1999. The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochimica et Cosmochimica Acta, 63(13-14): 1939-1953.
173. Wiederhold, J.G., 2015. Metal Stable Isotope Signatures as Tracers in Environmental Geochemistry. Environmental Science & Technology, 49(5): 2606-2624.
174. Willbold, M., Elliott, T., 2017. Molybdenum isotope variations in magmatic rocks. Chemical Geology, 449: 253-268.
175. WRA, 2003. Water Resource Agency Hydrological Yearbook. In: E-book (Editor). Water Resource Agency, Ministry of Economic Affair, Taiwan, ROC, Taipei.
176. Wu, J.-C., Yang, K.-M., Chen, Y.-R., Chi, W.-R., Closson, D., 2011. Tectonic implications of stratigraphy architecture in distal part of foreland basin, southwestern Taiwan. Tectonics: Rijeka, Croatia, InTech: 171-198.
177. Wu, W., Zheng, H., Yang, J., Luo, C., Zhou, B., 2013. Chemical weathering, atmospheric CO2 consumption, and the controlling factors in a subtropical metamorphic-hosted watershed. Chemical Geology, 356: 141-150.
178. Xu, L. et al., 2012. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: Multi-proxy constraints on the paleoenvironment. Chemical Geology, 318-319: 45-59.
179. Yang, J. et al., 2017. The molybdenum isotopic compositions of I-, S- and A-type granitic suites. Geochimica et Cosmochimica Acta, 205: 168-186.
180. Yen, T., 1963. The metamorphic belts within the Tananao Schist terrain of Taiwan. Geological Society of China.
181. Yokoyama, K. et al., 2007. Provenance study of tertiary sandstones from the Western foothills and Hsuehshan Range, Taiwan. Bulletin of the National Museum of Nature and Science Serial C, 33: 7-26.
182. Yoshimura, K. et al., 2001. Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan—chemical weathering of carbonate rocks by deep source CO2 and sulfuric acid. Chemical Geology, 177(3): 415-430.
183. You, C.-F., Gieskes, J.M., Lee, T., Yui, T.-F., Chen, H.-W., 2004. Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Applied Geochemistry, 19(5): 695-707.
184. Yui, T.-F., 2005. Isotopic Composition of Carbonaceous Material in Metamorphic Rocks from the Mountain Belt of Taiwan. International Geology Review, 47(3): 310-325.
185. Yui, T. et al., 2009. Late Triassic–Late Cretaceous accretion/subduction in the Taiwan region along the eastern margin of South China–evidence from zircon SHRIMP dating. International Geology Review, 51(4): 304-328.
186. Zack, T., Kronz, A., Foley, S.F., Rivers, T., 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology, 184(1-2): 97-122.
187. Zeng, J., Han, G., Zhu, J.-M., 2019. Seasonal and Spatial Variation of Mo Isotope Compositions in Headwater Stream of Xijiang River Draining the Carbonate Terrain, Southwest China. Water, 11(5): 1076.
指導教授 李德春 林殿順(Der-Chuen Lee Andrew Tien-Shun Lin) 審核日期 2023-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明