博碩士論文 103821003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:162 、訪客IP:18.118.226.105
姓名 鄒健宏(Jian-Hong Zou)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 皮膚表皮葡萄球菌透過發酵抑制紅色毛癬菌之研究
(Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Trichophyton rubrum)
相關論文
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 表皮葡萄球菌在人類皮膚微生物總體對皮膚訊號與腦波訊號影響
★ 土壤微生物組體研究:藉由內生細菌誘導之高GABA含量水稻增加神經肽Y以及減輕小鼠焦慮★ Fermentation of Leuconostoc mesenteroides reduces abdominal fat accumulation in high-fat diet mice
★ 選擇性發酵引發劑(SFI)觸發表皮葡萄球菌發酵以緩解UV-B誘導的自由基生成★ Identify and characterize the fermenting and electrogenic skin bacteria using selective prebiotics
★ 有益微生物的真菌學和細菌學研究: 在農業和人類健康中的應用★ 人體皮膚致電微生物組通過調節鐵和自由基來減輕紫外線B引起的皮膚損傷。
★ 微生物組中的細菌作為治療人類疾病的生物療法★ 皮膚表皮葡萄球菌作為電力活性菌以抑制痤瘡丙酸桿菌
★ 鼠李糖乳桿菌作為益生菌對抗 SARS-CoV-2 膜糖蛋白誘導的炎症★ Flavin mononucleotide-based electricity production by Staphylococcus epidermidis alleviates SARS-CoV-2- Nucleocapsid Phosphoprotein-induced IL-6 expression
★ Profiling the Age-related Microbiome via Detection of Antibodies to Gut Bacteria★ BACILLUS AMYLOLIQUEFACIENS生長在高GABA含量稻米刺激膠原蛋白合成以及減緩磷酸三鈣誘導產生的皮膚搔癢
★ 人體汗水之乳酸鈉觸發人類皮膚益生菌之表皮葡萄球菌發酵及皮膚電導之應用★ 5-甲基糠醛抑制L-乳酸葡萄球菌的發酵 表皮葡萄球菌和雙乙酰產生:一種淺在的新型除臭劑靶向人體汗液中的细菌發酵
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 皮膚真菌中紅色毛癬菌是一種感染人類的絲狀真菌,會引起角質組織的病變,是人類皮膚癬菌最常見的病原體,並引起人類超過90%皮膚真菌病。藉由核磁共振(NMR)分析,研究證明,表皮葡萄球菌,在人類皮膚上的共生菌,可以藉由甘油的發酵產生短鏈脂肪酸。為了證明表皮葡萄球菌是否會發酵影響紅色皮癬菌,將表皮葡萄球菌以及紅色皮癬菌生長在有甘油的培養基上,沒有甘油的作為對照組,發現表皮葡萄球菌與甘油培養具有明顯的抑制作用。此外,使用α乳糖化合物(ALM)對表皮葡萄球菌以及抗真菌藥物是否存在情況下對紅色毛癬菌進行處理。發現ALM能夠減少對紅色毛癬菌抗真菌藥的有效濃度,證明表皮葡萄球菌能誘導的ALM發酵來增強抗真菌活性,這些結果表明,表皮葡萄球菌共培養抑制紅色毛癬菌生長並驗證其皮膚共生菌可以進行發酵,以抵禦真菌感染的機制。這項研究結果未來可以用來治療紅色毛癬菌有關的皮膚疾病,包括頭癬,股癬和紅色毛癬菌感染的新策略。
摘要(英) Dermatophytes are a type of fungal infections on human nails. Trichophyton rubrum (T. rubrum) causes over 90% of dermatophytes in humans. By nuclear magnetic resonance (NMR) analysis, we demonstrated that Staphylococcus epidermidis, a commensal bacterium in the human skin microbiome, could mediate the fermentation of glycerol to produce short-chain fatty acids (SCFAs). To examine if S. epidermidis fermentation affects the growth of T. rubrum, the S. epidermidis bacteria were grown on agar plates in the presence or absence of glycerol, a naturally occurring metabolite found in human skin, right before growing T. rubrum in the overlaid agar. Only S. epidermidis grown showed visible inhibitory effects against T. rubrum, In addition, T. rubrum was treated with antifungal terbinafine in the presence or absence of alpha-lactose monohydrate (ALM) and/or S. epidermidis. We found that ALM can reduce the effective concentration of terbinafine against T. rubrum, suggesting that S. epidermidis mediates ALM fermentation to enhance the antifungal activity of terbinafine. Our data infer that skin commensal bacteria may undergo fermentation to ward off the fungal infection. Results of this study may lead to new strategies for treatments of T. rubrum-associated skin diseases inducing tinea capitis, tinea corporis, and deep dermal T. rubrum infections.
關鍵字(中) ★ 表皮葡萄球菌
★ 紅色毛癬菌
★ 發酵
★ 皮膚微生物
關鍵字(英) ★ Staphylococcus epidermidis
★ Trichophyton rubrum
★ fermentation
★ skin microbiome
論文目次 目錄
表目錄 v.
圖目錄 VI.
第壹章、緒論 1.
1.1 研究背景 1.
1.2 文獻回顧 2.
I. 皮膚微生物學 2.
II. 皮膚癬菌病-流行病學 2.
III. 皮膚癬菌病-病因 2.
IV. 皮膚真菌病-發病機制 3.
V. 皮膚真菌病-臨床表現 3.
VI. 皮膚真菌病-治療 4.
VII. 表皮葡球菌 4.
VIII. 微生物發酵 5.
IX. 短鏈脂肪酸 5.
1.3 研究動機及目的 6.
第貳章、材料與方法 7.
2.1 研究架構 7.
2.2 實驗架構 8.
2.3 儀器設備及藥品 9.
2.4 細菌鑑定及培養 11.
2.5 表皮葡萄球菌藉由甘油發酵影響紅色毛癬菌生長 14.
2.6 紅色毛癬菌及表皮葡萄球菌在酚紅瓊脂培養基下進行發酵 15.
2.7 表皮葡萄球菌藉由甘油影響紅色毛癬菌生長 15.
2.8 表皮葡萄球菌藉由乳糖發酵抑制紅色毛癬菌 16.
2.9 抗真菌藥物與表皮葡萄球菌及乳糖及紅色皮癬菌共同培養 17.
第參章、結果 18.
3.1 表皮葡萄球菌藉由甘油發酵抑制紅色毛癬菌 18.
3.2 表皮葡萄球菌藉由甘油影響紅色毛癬菌生長 18.
3.3 利用酚紅瓊脂培養基觀察表皮葡萄球菌及紅色毛癬菌 18.
3.4 表皮葡萄球菌藉由乳醣影響紅色毛癬菌生長 19.
3.5 抗真菌藥物與表皮葡萄球菌及乳糖及紅色皮癬菌共同培養 19.
第四章、討論 20.
4.1 表皮葡萄球菌藉由乳醣影響紅色毛癬菌生長 20.
4.2 探討紅色毛癬菌感染皮膚機制 21.
4.3 探討短鏈脂肪酸(SCFA)對於抑制皮膚真菌機制 22.
4.4 Terbinafine 對於抑制真菌的影響 23.
4.5 探討抗生素對於人類影響 23.
4.6 Antibiotic adjuvant 24.
第五章、結論 25.
參考文獻 26.
參考文獻 1. Achterman, R. R., & White, T. C. (2012). Dermatophyte virulence factors: identifying and analyzing genes that may contribute to chronic or acute skin infections. Int J Microbiol, 2012, 358305. doi:10.1155/2012/358305
2. Avis, T. J. (2007). .
3. BARRY L. HAINER, M. D. (2003). Dermatophyte Infections. VOLUME 67, NUMBER 1. Brasch, J. (2009). Current knowledge of host response in human tinea. Mycoses, 52(4{Brasch, 2009 #6})304-312.doi:10.1111/j.1439-0507.2008.01667.x
4. Brillowska-Dabrowska, A., Saunte, D. M., & Arendrup, M. C. (2007). Five-hour diagnosis of dermatophyte nail infections with specific detection of Trichophyton rubrum. J Clin Microbiol, 45(4), 1200-1204.doi:10.1128/JCM.02072-06
5. Carolina H. Pohl, J. L. F. K. a. V. S. T. (2011). Antifungal free fatty acids: A Review.
6. Deng, S., Zhang, C., Seyedmousavi, S., Zhu, S., Tan, X., Wen, Y., . . . Liao, W. (2015). Comparison of the in vitro activities of newer triazoles and established antifungal agents against Trichophyton rubrum. Antimicrob Agents Chemother, 59(7), 4312-4314. doi:10.1128/AAC.00244-15
7. Dobrowolska Iwanek, J., Zagrodzki, P., Wozniakiewicz, M., Wozniakiewicz, A., Zwolinska Wcislo, M., Winnicka, D., & Pasko, P. (2016). Procedure optimization for extracting short-chain fatty acids from human faeces. J Pharm Biomed Anal, 124, 337-340. doi:10.1016/j.jpba.2016.02.042
8. Evans, N. D., Oreffo, R. O., Healy, E., Thurner, P. J., & Man, Y. H. (2013). Epithelial mechanobiology, skin wound healing, and the stem cell niche. J Mech Behav Biomed Mater, 28, 397-409. doi:10.1016/j.jmbbm.2013.04.023
9. Farha, M. A., & Brown, E. D. (2013). Discovery of antibiotic adjuvants. Nat Biotechnol, 31(2), 120-122. doi:10.1038/nbt.2500
10. G. San-Blas, The cell wall of fungal human pathogens: its possible role in host- parasite relationships, Mycopathologia 79 (3) (1982).

11. G. Ko€llisch, et al., Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes, Immu- nology 114 (4) (2005 Apr).
12. G.D. Brown, Dectin-1: a signalling non-TLR pattern-recognition receptor, Nat. Rev. Immunol. 6 (1) (2006)
13. Hay, R. (2013). Superficial fungal infections. Medicine, 41(12), 716-718. doi:10.1016/j.mpmed.2013.09.011
14. I. Weitzman, R.C. Summerbell, The dermatophytes, Clin. Microbiol. Rev. 8 (2) (Apr 1995)
15. Julia Oh, A. L. B., Morgan Park, NISC Comparative Sequencing Program, Heidi H. Kong, Julia A. Segre. (2016). . doi:10.1016/j.cell.2016.04.008
16. J.W. Deacon, The moulds of man, in: Fungal Biology, Blackwell Publishing Ltd, Malden, MA, USA, 2006, pp. 322e338.
17. K. Kawai, et al., Expression of functional toll-like receptor 2 on human epidermal keratinocytes, J. Dermatol. Sci. 30 (2002)
18. Luz A. García-Madrid, et al., Trichophyton rubrum manipulates the innate immune functions of human keratinocytes, Cent. Eur. J. Biol. 6 (6) (2011)
19. Maranhao, F. C., Paiao, F. G., & Martinez-Rossi, N. M. (2007). Isolation of transcripts over-expressed in human pathogen Trichophyton rubrum during growth in keratin. Microb Pathog, 43(4), 166-172. doi:10.1016/j.micpath.2007.05.006
20. M.G. Netea, et al., Aspergillus fumigatus evades immune recognition during
germination through loss of toll-like receptor-4-mediated signal transduction,
J. Infect. Dis. 188 (2) (2003)
21. McAuley, W. J., Jones, S. A., Traynor, M. J., Guesne, S., Murdan, S., & Brown, M. B. (2016). An investigation of how fungal infection influences drug penetration through onychomycosis patient′s nail plates. Eur J Pharm Biopharm, 102, 178-184. doi:10.1016/j.ejpb.2016.03.008
22. M.M. Suter, K. Schulze, W. Bergman, et al., The keratinocyte in epidermal renewal and defence, Vet. Dermatol. 20
23. M. Mempel, et al., Toll-like receptor expression in human keratinocytes: nu- clear factor kappaB controlled gene activation by Staphylococcus aureus is toll- like receptor 2 but not toll-like receptor 4 or platelet activating factor receptor dependent, J. Invest. Dermatol 121 (6) (2003 Dec)
24. M.C. Lebre, Human keratinocytes express functional Toll-like receptor 3, 4, 5,
and 9, J. Invest. Dermatol 127 (2) (2007)
25. M.V. Dahl, Dermatophytosis and the immune response, J. Am. Acad. Dermatol. 31 (3 Pt 2) (1994 Sep)
26. Moreno-Coutino, G., Aquino, M. A., Vega-Memije, M., & Arenas, R. (2012). Necrotic ulcer caused by Trichosporon asahii in an immunocompetent adolescent. Mycoses, 55(1), 93-94. doi:10.1111/j.1439-0507.2010.01991.x
27. O. Takeuchi, et al., Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins, J. Immunol. 169 (1) (2002)
28. Scharschmidt, T. C., & Fischbach, M. A. (2013). What Lives On Our Skin: Ecology, Genomics and Therapeutic Opportunities Of the Skin Microbiome. Drug Discov Today Dis Mech, 10(3-4). doi:10.1016/j.ddmec.2012.12.003
29. Scher, R. K., Tavakkol, A., Sigurgeirsson, B., Hay, R. J., Joseph, W. S., Tosti, A., . . . Elewski, B. E. (2007). Onychomycosis: diagnosis and definition of cure. J Am Acad Dermatol, 56(6), 939-944. doi:10.1016/j.jaad.2006.12.019
30. Bruno Méhul1, , , Zhengzheng Gu, André Jomard, Gilbert Laffet, Martine Feuilhade, Michel Monod. (2016) . Sub6 (Tri r 2), an Onychomycosis Marker Revealed by Proteomics Analysis of Trichophyton rubrum Secreted Proteins in Patient Nail Samples. Volume 136, Issue 1, January 2016, Pages 331–333
31. Shu, M., Wang, Y., Yu, J., Kuo, S., Coda, A., Jiang, Y., . . . Huang, C. M. (2013). Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One, 8(2), e55380. doi:10.1371/journal.pone.0055380
32. Swidsinski, A., Loening-Baucke, V., Schulz, S., Manowsky, J., Verstraelen, H., & Swidsinski, S. (2016). Functional anatomy of the colonic bioreactor: Impact of antibiotics and Saccharomyces boulardii on bacterial composition in human fecal cylinders. Syst Appl Microbiol, 39(1), 67-75. doi:10.1016/j.syapm.2015.11.002
33. S. Braedel, et al., Aspergillus fumigatus antigens activate innate immune cells
via toll-like receptors 2 and 4, Br. J. Haematol. 125 (3) (2004) .

34. Thvedt, T. H., Kaasa, K., Sundby, E., Charnock, C., & Hoff, B. H. (2013). Chiral N-benzyl-N-methyl-1-(naphthalen-1-yl)ethanamines and their in vitro antifungal activity against Cryptococcus neoformans, Trichophyton mentagrophytes and Trichophyton rubrum. Eur J Med Chem, 68, 482-496. doi:10.1016/j.ejmech.2013.07.043
35. T.G. Smijs, S. Pavel, The susceptibility of dermatophytes to photodynamic treatment with special focus on Trichophyton rubrum, Photochem. Photobiol. 87 (1) (2011).
36. Toshiko Miyata , Takao Fujimura, Mikio Masuzawa, Kensei Katsuoka, Shigeo Nishiyama (1996). Local expression of IFN-γ mRNA in skin lesions of patients with dermatophytosis. November 1996, Pages 167-171
37. Author links open the overlay panel. Numbers correspond to the affiliation list which can be exposed by using the show more link.
38. Veríssimo, C. (2016). Fungal Infections. 27-34. doi:10.1016/b978-0-12-411471-5.00003-x
39. Wang, C., Mao, Y., Wang, D., Yang, G., Qu, Q., & Hu, X. (2008). Voltammetric determination of terbinafine in biological fluid at glassy carbon electrode modified by cysteic acid/carbon nanotubes composite film. Bioelectrochemistry, 72(1), 107-115. doi:10.1016/j.bioelechem.2007.11.014
40. Zhang, X. H., Wang, Z., Yin, B., Wu, H., Tang, S., Wu, L., . . . Bao, E. D. (2016). A complex of trypsin and chymotrypsin effectively inhibited growth of pathogenic bacteria inducing cow mastitis and showed synergistic antibacterial activity with antibiotics. Livestock Science, 188, 25-36. doi:10.1016/j.livsci.2016.03.017
41. Zhao, B., & Zhang, X. (2016). Mathematical analysis of multi-antibiotic resistance. Int J Cardiol, 219, 33-37. doi:10.1016/j.ijcard.2016.05.069
指導教授 黃俊銘(Chun-Ming Huang) 審核日期 2016-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明