博碩士論文 103821009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.140.186.241
姓名 羅凱泓(Kai-Hong Luo)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 Pseudomonas sp. A46全基因組分析與重金屬復育基因工程菌開發
(Genomic Characterization of Pseudomonas sp. A46 and Establishment of Genetic Bacteria for Enhancing Bioremediation of Heavy Metals)
相關論文
★ 4-aminobiphenyl誘導HepG2細胞中的microRNAs表現 並藉由microRNAs調控DNA修復機制★ 研究Dicrotophos對HepG2細胞毒性之分子機制:CSA蛋白質在毒性扮演之角色
★ TNT經由ROS介導之內質網壓力及粒線體失衡誘導人類肝臟細胞凋亡★ 4-Aminobiphenyl 調控 miR-630 抑制 RAD18 表現誘導 Hep3B 細胞產生氧化性 DNA 損傷
★ 三硝基甲苯之毒理機制及生物降解暨多氯乙烯汙染模場生物整治★ 探討人類肝癌細胞HepG2經4-氨基聯苯處理過後miRNA-630對於同源重組修復相關蛋白MCM8的調控機制
★ 假單胞菌Pseudomonas sp. A46之基因工程菌開發及重金屬之生物累積和生物吸附潛力探討★ 開發新穎性包埋Dehalococcoides mccartyi及Clostridium butyricum之長效脫氯膠體
★ 探討DNA損傷反應與慢性暴露4-胺基聯苯產生之肝臟毒性★ 以Lpp-OmpA工法建構新穎性基因工程菌強化鎘生物復育能力
★ 建構脫鹵球菌與固氮菌共培養系統促進氮源缺乏環境下的還原脫氯作用★ 硒代胱氨酸通過誘導人肝細胞癌中的 DNA 損傷和抑制 DNA 修復途徑來增強順鉑敏感性
★ 轉錄體分析 Acetobacterium woodii 降解1,1,1-三氯乙烷機制並用以協助 Dehalococcoides進行還原脫氯★ 以宏觀基因體分析新穎 Candidatus Dehalobacterium strain DLY 降解二氯甲烷機制
★ 研究雙特松對HepG2細胞之DNA修復的影響★ 金屬硫蛋白在大腸桿菌的表達與金屬累積能力測試
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 汞是一種自然存在的元素,常溫下唯一的液態金屬,帶有強烈的生物毒性。環境中有許多細菌具有汞抗性,能抵抗汞汙染環境並將高毒性型態汞轉化成低毒性型態。抗汞菌株Pseudomonas sp. A46能培養於含60 ppm Hg2+ LB培養基中,並於24小時內移除培養基中89.24%中汞離子,推測可為汞汙染生物復育之優勢菌株。本論文利用次世代定序技術分析Pseudomonas sp. A46基因體組成,分析結果顯示除mer operon外可針對汞進行生物復育外,菌株還帶有鎘抗性基因czcABC、鉻抗性與還原基因chr operon、銅抗性和氧化基因copB與cueO、鉛抗性基因ZntA與砷抗性和還原基因acr3與arsC,因此此菌株除汞外可能帶有上述重金屬之抗性與生物復育潛力可供外來進一步研究。有研究指出重金屬會對細胞造成氧化壓力,qPCR分析結果顯示菌株培養在含汞環境下,除汞操作組外其抗氧化相關基因如SOD、GPx、CAT等表現量皆有上升。由於利用汞操作組還原揮發汞,經過汞循環路徑,最終仍可能於其它地區沉降,無法完全解決汞汙染問題,本論文參考前人文獻在Pseudomonas sp. A46菌株中表現能結合重金屬之金屬硫蛋白,將重金屬固定於菌株內以便後續回收,此外為解決蛋白質表現問題,本論文開發Pseudomonas sp. A46用pJBR持續表現型蛋白質表現系統,並將綠螢光蛋白與金屬硫蛋白融合,使金屬硫蛋白能於菌株中穩定表現並能簡易觀察蛋白質表現量,汞固定實驗顯示轉殖金屬硫蛋白之Pseudomonas sp. A46菌體內汞濃度較野生型高3.7倍,顯示利用金屬硫蛋白增加汞吸收量是可行的。
摘要(英) Mercury is a nature liquid element which has strong toxicity. In the environment, many mercury-resistant bacteria can transform the high-toxic state mercury into low-toxic state mercury. One of the mercury-resistant bacteria, Pseudomonas sp. A46, is able to growth in the LB medium with 60ppm mercuric ion, to remove 89.24% mercuric ion from the medium in 24 hours. We suggested that P. spp A46 can be the potential strain for mercury-bioremediation. Using the Next Generation Sequencing (NGS) technique to analyze whole genome of P. spp A46, our results indicated that the strain not only carries mer operon for mercury-bioremediation but also cadmium resistant gene czcABC、chromium resistant and reduction gene chr operon、copper resistant and oxidation gene copB and cueO、lead resistant gene zntA and arsenic resistant and reduction gene acr3 and arsC. As mercury was reported to induce the oxidative stresss, our results also confirmed that the expression levels of superoxide dismutase, glutathione peroxidase and catalase were increased under mercury stress. Although mercury was potentially removed by Pseudomonas sp. A46, part of mercury could be vaporized into air. To avoid the vaporization of mercury when bioremediation was operating, we developed one genetic bacteria harbouring metallothionein, a heavy metal-binding protein. Our results found out that the gentic bacteria, P. spp A46, could bind to mercury with 3.7 fold concentration of mercury than wild type strain.
關鍵字(中) ★ 汞
★ 重金屬
★ 生物復育
★ 次世代定序
★ 金屬硫蛋白
★ 基因工程菌
關鍵字(英) ★ mercury
★ heavy metal
★ bioremediation
★ next generation sequencing
★ metallothionein
★ genetic bacteria
論文目次 致謝………………………………………………………………………………..…V
中文摘要………………………………………………………………………..…...VI
英文摘要……………………………………………………………………………VII
第壹章 緒論 (Introduction)…………………………………………………………..1
1.1 研究緣起…………………………………………………………………….1
1.2汙染物「汞」之特性…………………………………………………………..1
1.2.1汞的型態、污染來源及傳輸 1
1.2.2 汞在環境中的危害途徑…………………………………………………..2
1.2.3 汞對人體的危害與影響…………………………………………………..3
1.2.3.1 元素汞…………………………………………………………………...3
1.2.3.2 無機汞…………………………………………………………………...5
1.2.3.3 有機汞…………………………………………………………………...6
1.3 汞汙染生物復育法………………………………………………………….8
1.4 次世代定序技術 (Next generation sequencing, NGS) 10
1.5 基因工程細菌 (Genetic engineering bacteria)與生物復育 12
1.5.1 金屬硫蛋白 (Metallothionein) 12
第貳章 實驗目的和實驗架構 14
實驗目的………………………………………………………………………..14
第參章 實驗材料與方法 (Materials and Methods) 15
3.1.2 常用藥品與試劑…………………………………………………………17
第二節 實驗方法………………………………………………………………22
一、菌株來源、保存與繼代培養 (Bacterial culture) 22
二、菌株揮發汞離子能力測試…………………………………………………23
三、汞消化萃取與檢測方法……………………………………………………24
三、聚合?鏈鎖反應 (Polymerase chain reaction) 25
四、細菌RNA萃取 (Total RNA isolation) 26
五、反轉錄作用 (Reverse transcription) 27
六、DNA/RNA電泳……………………………………………………………28
七、即時定量聚合?連鎖反應 (qRT-PCR) 29
八、大腸桿菌電穿孔勝任細胞製備 (E. coli competent cell) 30
九、大腸桿菌電穿孔轉型法 (E. coli electroporation) 31
十、傳統法質體抽取與純化 (Plasmid extraction and purification) 32
十一、質體小量抽取試劑組……………………………………………………33
十二、DNA純化………………………………………………………………..34
十三、TSS competent cell………………………………………………………35
十四、限制酵素處理 (Digestion) 36
十五、DNA膠體純化 (Gel extraction) 36
十六、接合反應 (Ligation)…………………………………………………….37
十七、pJBME持續表現型載體建構 38
十八、蛋白質萃取 (Protein extraction) 40
十九、蛋白質濃度測定 (RC.DC protein assay) 41
二十、蛋白質電泳 (SDS Poly-acrylamide-gel-electrophoresis) 42
二十一、蛋白質轉漬……………………………………………………………43
二十二、西方免疫墨點法 (Western immune blotting) 44
二十三、細菌genomic DNA萃取 45
二十四、NGS菌種全基因組定序 (Whole genome sequencing) 46
二十五、生長細胞 (growth cell)汞固定實驗 47
第肆章 實驗結果 (Result) 49
4.1 評估Pseudomonas sp. A46於含60 ppm Hg2+ LB培養基生長情況與Hg2+移除效率………………………………………………………………………..49
4.2 Pseudomonas sp. A46 draft genome屬性分析 49
4.3 以Pseudomonas sp. A46 16S rDNA序列建立菌株親緣關係圖 50
4.4 Pseudomonas sp. A46 gene COGs功能性分析 50
4.5 Pseudomonas sp. A46 draft genome汞生物復育相關基因分析 50
4.6 Pseudomonas sp. A46 draft genome常見重金屬生物復育相關基因分析………………………………………………………………………………..50
4.7 以qRT-PCR分析汞生物復育相關基因表現量 52
4.8 以qRT-PCR分析抗氧化壓力相關基因表現量 52
4.9 以綠螢光蛋白評估持續表現型載體於Pseudomonas sp. A46目標蛋白質表現能力………………………………………………………………………..52
4.10 以西方墨點法評估MT1-EGFP-His蛋白質於Pseudomonas sp. A46內表現量與穩定度…………………………………………………………………..53
4.11 以生長細胞汞固定法測試基因工程菌株固定汞能力 53
第伍章 討論 ( Discussion ) 54
5.1 菌株Pseudomonas sp. A46汞抗性與還原揮發汞離子能力 54
5.2 Pseudomonas sp. A46 draft genome屬性分析 55
5.3 Pseudomonas sp. A46 16S rDNA親緣關係圖 55
5.4 Pseudomonas sp. A46 gene COGs功能性分析 56
5.5 Pseudomonas sp. A46重金屬生物復育相關基因分析 56
5.6.1 Pseudomonas sp. A46汞生物復育相關基因分析 56
5.6.2 重金屬鎘生物復育相關基因分析 57
5.6.3 重金屬鉻生物復育相關基因分析 58
5.6.4 重金屬銅生物復育相關基因分析 59
5.6.5 重金屬鉛生物復育相關基因分析 59
5.6.6 重金屬砷生物復育相關基因分析 60
5.7.1 以即時定量聚合?鏈鎖反應 (Quantitative real-time PCR, qPCR)分析抗汞相關基因表現量變化…………………………………..……………………61
5.7.2 重金屬產生之氧化壓力相關基因變化 61
5.8 金屬硫蛋白 (metallothionein)與基因工程菌 62
5.9 持續表現型載體開發……………………………………………………...63
5.10 金屬硫蛋白穩定度分析………………………………………………….65
5.11 基因工程菌株汞生物固定分析 65
結論……………………………………………………………………………..66
參考文獻 (Reference) 67
圖表 78
補充說明 95

參考文獻 1. USEPA (US Environmental Protection Agency). Mercury. Retrieved October 19, 2015, from http://www.epa.gov/mercury/index.html.
2. Streets, D., Hao, J., Wu, Y., Jiang, J., Chan, M., Tian, H., Feng, X. Anthropogenic mercury emissions in China. Atmos Environ. 2005, 39. 7789–7806
3. Wilson, S.J., Steenhuisen, F., Pacyna, J.M., Pacyna, E.G. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories. Atmos Environ. 2006, 40, 4621–4632
4. Robinson, J., Tuovinen, O.H. Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical and genetic analyses. Microbiol Rev. 1984, 48, 95–124.
5. Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 2010, 10: 5951-5964
6. Pirrone, N. and Wichmann-Fiebig, M. Some recommendations on mercury measurements and research activities in the European Union. Atmos Environ. 2003, Vol.37. Supplement no.1, pp. s3–s8.
7. Jensen, S. and Jernelov, A. Biological methylation of mercury in aquatic organisms. Nature. 1969, 223: 753-754.
8. ATSDR (The Agency for Toxic Substances and Disease Registry). Toxicological profile for mercury. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. 1999.
9. Compeau, G.C. and Bartha, R. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol. 1985, 50: 498-502.
10. Ullrich, S.M., Tanton, T.W., Abdrashitova, S. A. Mercury in the aquatic environment: a review of factors affecting methylation". Crit Rev Environ Sci. Tech. 2001, 31: 241.
11. Mitra, S. Mercury in the ecosystem: its dispersion and pollution today. Switzerland: Trans Tech Publications. 1986.
12. Chen, Z.S., Lai, H.Y., Su, S.W., Lin, C.C. A study on the recovery of soil fertility of two metal-contaminated soils after treating with soil acid washing. Journal of Science and Technology. 2007, Vol. 16: 39-46.
13. Dash, H.R., Das, S. Bioremediation of mercury and the importance of bacterial mer genes. International Biodeterioration & Biodegradation. 2012, 75, 207-213.
14. Aguilar-Barajas E, Cervantes C, Ramirez-Diaz M. I., Riveros-Rosas H. Heavy Metal Resistance in Pseudomonads. Pseudomonas. 2010, vol. 6: p. 255–82.
15. Okino, S., Iwasaki, K., Yagi, O., Tanaka, H. Development of a biological mercury removal-recovery system. Biotechnol Lett. 2000, 22: 783-788.
16. Hansen, C.L. Zwolinski, G., Martin, D., Williams, J.W. Bacterial removal of mercury from sewage. Biotechnol Bioeng. 1984, 26: 1330-1333.
17. Metzker, M.L. Sequencing technologies-the next generation. Nat Rev Genet. 2010, vol 11: 31-46.
18. Shendure, J., Ji, H. Next-generation DNA sequencing. Nat Biotechnol. 2008, Vol 26 No. 10
19. Snyder, M., Wang, Z., Gerstein, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009, 10(1): 57–63
20. Steinmetz, L.M., David, L., Huber, W., Granovskaia, M., Toedling, J., Davis, R. W. A high-resolution map of transcription in the yeast genome. PNAS. 2006, vol. 103 No. 14: 5320-5325.
21. Delft, J.v., Gai, S., Lienhard, M.M., Albrecht, M.W., Kirpiy, A. RNA-seq provides new insights in the transcriptome responses induced by the carcinogen Benzo [a] pyrene. Toxicol Sci. 2012, 130, 427-439.
22. Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat. Biotech. 2004, 22, 583–588.
23. Valls, M., Atrian, S., de Lorenzo, V., Fernandez, L.A. Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat. Biotechnol. 2000, 18, 661–665.
24. Ackerley, D.F., Gonzalez, C.F., Keyhan, M., Blake, R., Matin, A. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ. Microbiol. 2004, 6, 851–860.
25. Kube, M., Beck, A., Zinder, S.H., Kuhl, H., Reinhardt, R. Genome sequence of the chlorinated compound respiring bacterium Dehalococcoides species strain CBDB1. Nat. Biotech. 2005, 23, 1269–1273.
26. Parnell, J.J., Park, J., Denef, V., Tsoi, T., Hashsham, S., Quensen, J.I., Tiedje, J.M. Coping with polychlorinated biphenyl (PCB) toxicity: physiological and genomewide responses of Burkholderia xenovorans LB400 to PCB-mediated stress. Appl. Environ. Microbiol. 2006, 72, 6607–6614.
27. Schue, M., Dover, L.G., Besra, G.S., Parkhill, J., Brown, N.L. Sequence and analysis of a plasmid encoded mercury resistance operon from Mycobacterium marinum identifies MerH, a new mercuric ion transporter. J. Bacteriol. 2009, 19, 439–444.
28. Liu, S., Zhang, F., Chen, J., Sun, G.X. Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J. Environ. Sci. 2011, 23(9):1544-50.
29. Lee, S.W., Glickmann, E., Cooksey, D.A. Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl. Environ. Microbiol. 2001, 67, 1437–1444.
30. Sasaki, Y., Minakawa, T., Miyazaki, A., Silver, S., Kusano, T. Functional dissection of a mercuric ion transporter Mer C from Acidithiobacillus ferrooxidans. Biosci. Biotech. Biochem. 2005, 69, 1394–1402.
31. Singh, D.P., Singh, J.S., Abhilash, P.C., Singh, G.B., Singh, R.P. Genetically engineered bacteria: An emerging tool for environmental remediation and future research perspectives. Gene. 2011, 480(1-2):1-9.
32. Ma, Y., Lin, J., Zhang, C., Ren, Y., Lin, J. Cd (II) and As (III) bioaccumulation by recombinant Escherichia coli expressing oligomeric human metallothioneins. J Hazard Mater. 2011, 185: 1605-1608
33. Formigari, A., Irato, P., Santon, A. Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp Biochem Physiol C Toxicol Pharmacol. 2007, 146(4):443-59
34. Chojnacka, K. Biosorption and bioaccumulation – the prospects for practical applications. Environ Int. 2010, 36(3): 299–307
35. Wagh, A.S., Singh, D., Jeong, S.Y. Mercury stabilization in chemically bonded phosphate ceramics, Invited paper presented at EPA’s Workshop on Mercury Products, Processes, Waste, and the Environment: Eliminating, Reducing and Managing Risks, Baltimore. 2000.
36. Zhang, W.W., Chen, L., Liu, D. Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbiol Biotechnol. 2012, 93:1305–1314.
37. Chang, J.S. and Law, W.S. Development of microbial mercury detoxification processes using mercury-hyperresistant strain of Pseudomonas aeruginosa PU21. Biotechnol Bioeng. 1998, 57: 464-470.
38. Delcher, A.L., Harmon, D., Kasif, S., White, O., Salzberg, S.L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999, 27(23):4636-41.
39. Salzberg, S., Delcher, A., Kasif, S., White, O. Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 1998, 26(2):544-8.
40. Lagesen, K., Hallin, P.F., Rodland, E., Starfeldt, H.H., Rognes, T. RNAmmer: consistent annotation of rRNA genes in genomic sequences. Nucleic Acids Res. 2007, 35(9):3100-8.
41. Lowe, T.M. and Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic. Acids Res. 1997, 25(5):955-64.
42. Chen, T.W., Gan, R.C., Wu, T.H., Huang, P.J., Lee, C.Y. FastAnnotator: an efficient transcript annotation web tool. BMC Genomics. 2012, 13 Suppl 7:S9.
43. Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003, 4:41.
44. Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A., and Kanehisa, M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007, 35, W182-5
45. Lovley, D.R. Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol. 2003, 1(1):35-44.
46. Kube, M., Chernikova, T.N., Al-Ramahi, Y., Beloqui, A., Lopez-Cortez, N. Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira Antarctica. Nat Commun. 2013, 4:2156.
47. Hamer, D.H. Metallothionein. Ann. Rev. Biochem. 1986, 55:913-51.
48. Yagle, M.K. and Palmiter, D.P. Coordinate regulation of mouse metallothionein I and II genes by heavy metals and glucocorticoids. Mol Cell Biol. 1985, 5(2):291-4.
49. Liu, Y., Liu, J., Iszard, M.B., Andrews, G.K., Palmiter, R.D. Transgenic mice that overexpress metallothionein-I are protected from cadmium lethality and hepatotoxicity. Toxicol Appl Pharmacol. 1995, 135(2):222-8.
50. Ruiz, O.N., Alvarez, D., Gonzalez-Ruiz, G., Torres, C. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnology. 2011, 11:82.
51. Chojnacka, K. Biosorption and bioaccumulation – the prospects for practical applications. Environ Int. 2010, 36:299–307.
52. Bafana, A., Chakrabarti, T., Krishnamurthi, K. Mercuric reductase activity of multiple heavy metal-resistant Lysinibacillus sphaericus G1. J Basic Microbiol. 2013, 55, 285–292.
53. Dash, H.R., Mangwani, N., Das, S. Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environ Sci Pollut Res. 2014, 21:2642–2653.
54. Giovanella, P., Cabral, L., Menezes, F., Gianello, C., Anastacio, F. Mercury (II) removal by resistant bacterial isolates and mercuric (II) reductase activity in a new strain of Pseudomonas sp. B50A. N Biotechnol. 2016, 33(1):216-23.
55. Quail, M.A., Smith, M., Coupland, P., Otto, T.D., Harris, S.R. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012, 13:341.
56. Ganguli, A., Tripathi, A.K. Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol Biotechnol. 2002, 58(3):416-20.
57. De, J., Ramaiah, N., Vardanyan, L. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol (NY). 2008, 10(4):471-7.
58. Sinha, S., Mukherjee, S.K. Pseudomonas aeruginosa KUCD1, a possible candidate for cadmium bioremediation. Braz J Microbiol. 2009, 40(3):655-62.
59. Das, K., Mukherjee, A.K. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol. 2007, 8(7):1339-45.
60. Natale, D.A., Shankavaram, U.T., Galperin, M.Y., Wolf, Y.I., Aravind, L. Towards understanding the first genome sequence of a crenarchaeon by genome annotation using clusters of orthologous groups of proteins (COGs). Genome Biol. 2000, 1(5).
61. Liebert, C.A., Wireman, J., Smith, T., Summers, A.O. Phylogeny of mercury resistance (mer) operons of gram-negative bacteria isolated from the fecal flora of primates. Appl Environ Microbiol. 1997, 63(3): 1066–1076.
62. Mattes, T.E., Alexander, A.K., Richardson, P.M., Munk, A.C., Han, C.S. The genome of Polaromonas sp. strain JS666: insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol. 2008, 74(20):6405-16.
63. Kugelberg, E., Kofoid, E., Reams, A.B., Andersson, D.I., Roth, J.R. Multiple pathways of selected gene amplification during adaptive mutation. Proc Natl Acad Sci USA. 2006, 103(46):17319-24.
64. Crupper, S.S., Worrell, V., Stewart, G.C., Iandolo, J.J. Cloning and expression of cadD, a new cadmium resistance gene of Staphylococcus aureus. J Bacteriol. 1999, 181(13):4071-5.
65. Nies, D.H. The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol. 1995, 177(10):2707-12.
66. Grosse, C., Grass, G., Anton, A., Franke, S., Santos, A.N. Transcriptional organization of the czc heavy-metal homeostasis determinant from Alcaligenes eutrophus. J Bacteriol. 1999, 181(8):2385-93.
67. Zeng, X., Tang, J., Liu, X., Jiang, P. Response of P. aeruginosa E(1) gene expression to cadmium stress. Curr Microbiol. 2012, 65(6):799-804.
68. Chakraborty, J., Das, S. Characterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11. Environ Sci Pollut Res Int. 2014, 21(24):14188-201.
69. Qi, W., Reiter, R.J., Tan, D.X., Garcia, J.J., Manchester, L.C. Chromium(III)-induced 8-hydroxydeoxyguanosine in DNA and its reduction by antioxidants: comparative effects of melatonin, ascorbate, and vitamin E. Environ Health Perspect. 2000, 108(5):399-402.
70. Ramirez-Diaz, M.I., Diaz-Perez, C., Vargas, E., Riveros-Rosas, H., Campos-Garcia, J. Mechanisms of bacterial resistance to chromium compounds. Biometals. 2008, 21(3):321-32.
71. He, M., Li, X., Guo, L., Miller, S.J., Rensing, C. Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1. BMC Microbiol. 2010, 10:221.
72. He, M., Li, X., Liu, H., Miller, S.J., Wang, G. Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J Hazard Mater. 2011, 185(2-3):682-8.
73. Macomber, L., Imlay, J.A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA. 2009, 106(20):8344-9.
74. Shafeep, S., Yesilkaya, H., Kloosterman, T.G., Narayanan, G., Wandel, M. The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. Mol Microbiol. 2011, 81(5):1255-70.
75. Franke, S., Grass, G., Rensing, C., Nies, D.H. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol. 2003, 185(13):3804-12.
76. Djoko, K.Y., Chong, L.X., Wedd, A.G., Xiao, Z. Reaction mechanisms of the multicopper oxidase CueO from Escherichia coli support its functional role as a cuprous oxidase. J Am Chem Soc. 2010, 132(6):2005-15.
77. Hynninen, A., Touze, T., Pitkanen, L., Mengin-Lecreulx, D., Virta, M. An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Mol Microbiol. 2009, 74(2):384-94.
78. Monchy, S., Vallaeys, T., Bossus, A., Mergeay, M. Metal transport ATPase genes from Cupriavidus metallidurans CH34: a transcriptomic approach. Intern. J. Environ. Anal. Chem. 2006, 86(9): 677-92.
79. Coker, O.O., Palittapongarnpim, P. Current understanding of de novo synthesis of bacterial lipid carrier (undecaprenyl phosphate): More enzymes to be discovered. Afr J Microbiol Res. 2011, 5(18): 2555-65.
80. Borremans, B., Hobman, J.L., Provoost, A., Brown, N.L., van Der Lelie, D. Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol. 2001, 183(19):5651-8.
81. Kaur, S., Kamli, M.R., Ali, A. Role of arsenic and its resistance in nature. Can. J. Microbiol. 2011, 57: 769–774.
82. Mateos, L.M., Ordonez, E., Letek, M., Gil, J.A. Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. Int Microbiol. 2006, 9(3):207-15.
83. Mo, H., Chen, Q., Du, J., Tang, L., Qin, F., Miao, B. Ferric reductase activity of the ArsH protein from Acidithiobacillus ferrooxidans. J Microbiol Biotechnol. 2011, 21(5):464-9.
84. Ercal, N., Gurer-Orhan, H., Aykin-Burns, N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 2001, 1(6):529-39.
85. Valko, M., Horris, H., Cronin, M.T.D. Metals, Toxicity and Oxidative Stress. Curr Med Chem. 2005, 12:1161-1208.
86. Apel, K., Hirt, H. REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004, 55:373–99.
87. Qiu, D., Damron, F.H., Mima, T., Schweizer, H.P., Yu, H.D. PBAD-Based Shuttle Vectors for Functional Analysis of Toxic and Highly Regulated Genes in Pseudomonas and Burkholderia sp. and Other Bacteria. Appl Environ Microbiol. 2008, 74(23): 7422–7426.
88. Gong, T., Liu, R., Zuo, Z., Che, Y., Yu, H., Song, C. Metabolic Engineering of Pseudomonas putida KT2440 for Complete Mineralization of Methyl Parathion and γ-Hexachlorocyclohexane. ACS Synth Biol. 2016, 5(5):434-42.
89. Salis, H.M., Mirsky, E.A., Voigt, C.A. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol. 2009, 27(10):946-50.
90. Peters, J.M., Mooney, R.A., Kuan, P.F., Rowland, J.L., Keles, S. Rho directs widespread termination of intragenic and stable RNA transcription. Proc Natl Acad Sci USA. 2009, 106(36):15406-11.
91. Berka, T., Shatzman, A., Zimmerman, J., Strickler, J., Rosenberg, M. Efficient Expression of the Yeast Metallothionein Gene in Escherichia coli. J Bacteriol. 1988, 170(1):21-26.
92. Yang, F., Zhou, M., He, Z., Liu, X., Sun, L. High-yield expression in Escherichia coli of soluble human MT2A with native functions. Protein Expr Purif. 2007, 53(1):186-94.
93. Tamura, K., Dudley, J., Nei, M., Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0 Mol. Biol. Evol. 2007, 24(8):1596–1599.
94. Deng, X., Wilson, D. Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli. Appl Microbiol Biotechnol. 2001, 56(1-2):276-9.
指導教授 陳師慶(Ssu-Ching Chen) 審核日期 2017-1-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明