博碩士論文 103821017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:54.80.26.116
姓名 張筑喻(Chu-Yu Chang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 類風濕性關節炎模式小鼠之唾液蛋白質體與 盲腸、糞便菌相分析
(Analysis of saliva proteome and cecum/ fecal bacteria community in rheumatoid arthritis model mice)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 類風濕關節炎(RA)是一種複雜的慢性,全身性自身免疫性疾病。它會影響關節、骨骼進而促進關節破壞或者是骨骼畸形。儘管RA的研究已經完成多年,該疾病的發病機制目前仍較少被了解而使其難以幫助診斷。建立實驗模式動物可以幫助研究,並且了解疾病病源機制或是治療。在本論文,我們的研究目的為以人類試驗為目標,藉此建立在類風溼性關節炎之蛋白質體學與微生物菌相分析平台,並希望找出與疾病之關聯性。因此,我們以類風溼性關節炎模式動物為研究樣本並分析其唾液、血清蛋白質體與口腔黏膜、盲腸黏膜、盲腸內容物及糞便之微生物菌相。首先,利用基質輔助雷射脫附離子化-飛行時間質譜儀 (MALDI TOF MS) 分析健康與疾病之小鼠唾液的不同表現蛋白質圖譜。根據結果發現,分子量約1418 (Da)只出現在健康樣本中,2702 (Da)則只出現在疾病之樣本。m/z 在6370、6995、11285、13979以及22655在健康與疾病之樣本皆有峰值,但其相對含量則是在疾病樣本中逐漸變低。其次,SDS-PAGE電泳分析血清之控制組及疾病蛋白質體並沒有顯著差異。最後,在盲腸黏膜與內容物之樣本,Parabacteroides merdae在RA第一週佔了約70%;另一方面,Akkermansia muciniphila在RA第四週佔了約70%。結論,利用MALDI-TOF MS能快速分析唾液蛋白質圖譜。在血清樣本中沒有顯著差異之蛋白質體,但仍然發現在發炎反應持續進行時,白蛋白在疾病樣本與健康之間其相對含量減少,此情形在RA之患者中已被證實存在。 A. muciniphila 與體重減輕相關並且期會增厚腸道黏膜並預防發炎反應。在本結果中,推測在RA第四週,關節炎指數最高週數,A. muciniphila 會影響小鼠體重並使其減輕。而P. merdae 則是在腸道發炎環境下會較少含量,與本結果中對照,在RA第四週之樣本中P. merdae之含量與RA第一週有明顯減少趨勢。希望未來能繼續藉由動物模式了解類風溼性關節炎與蛋白質學及微生物菌相之間的關係,能幫助未來在人體臨床上之治療與診斷,以達到分析平台之效用。
摘要(英) Rheumatoid arthritis (RA) is a complex, chronic, and systemic autoimmune disease. It affects joints, and bones, promoting joints destruction as well as bone deformities. Although researches of RA has been ongoing for many years, still relatively less understanding of its pathogenesis were known and it is difficult to diagnosis. Established animal models can assists in the research progress. It helps to understand the disease pathogenesis or treatment. In this thesis, our aim is to establish platform to analyze proteome, bacterial community in RA, finding the relationship with disease and do for future experiment of human. Therefore, we chose animal models of RA for analysis of saliva, serum proteome and oral mucosa, cecum mucosa, cecum content and stool for bacterial community. First, the differentially expressed protein profiles in the saliva between healthy and RA disease mice were analyzed by matrix assisted laser desorption/ionization time- of –flight mass spectrometry (MALDI- TOF MS). According to the results, we found the peak of m/z 1418 was only appearing in healthy control, but not in disease sample, and the peak of m/z at 2702 was only appearing in disease samples not in healthy sample, relatively. Peak of m/z near 6370, 6995, 11285, 12728, 13979 and 22655 were show in both healthy and disease samples. However, the intensities were low in disease samples. Second, we found between healthy and disease serum that there was no significant difference by SDS-PAGE gel in mice serum protein. Finally, Parabacteroides merdae was among 70% in RA 1-week, on the other hand, Akkermansia muciniphila was among 70% in RA 4-week mice cecum mucosa and content samples. The conclusion is that saliva protein profiling by MALDI-TOF MS is a quickly method. And even though there was no significant difference in serum protein, albumin still had low intensity in disease sample when the inflammation was continued and it confirm in RA patients. For A. muciniphila it was related to weight loss and can increase intestinal mucosa thickness to prevent inflammation. In our result we surmise in RA 4-week, which is of high arthritis score and the A. muciniphila was affecting mice weight. P. merdae decreased in inflammation intestinal environment and in our result the RA 4-week that P. merdae was low than RA-1 week. We hope that in the future we will continue to use animal model of rheumatoid arthritis and understand the relationship between proteome, microbiome and disease. And can help for the clinical treatment and diagnosis in humans in the future, in order to complete the analysis platform.
關鍵字(中) ★ 類風溼性關節炎
★ 唾液
★ 蛋白質
★ 菌相
關鍵字(英) ★ Rheumatoid arthritis
★ Saliva
★ Protein
★ bacteria community
論文目次 中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 v
表目錄 vi
縮寫與全名對照表 vii
一、 緒論 1
1.1類風溼性關節炎 1
1.1.1 類風濕性關節炎與常見併發症 3
1.2類風溼性關節炎與生物標記物 3
1.3類風濕性關節炎動物模式 5
1.4類風濕性關節炎與微生物之關聯性 6
1.5質譜儀技術於蛋白質體分析之應用 6
1.6計畫背景與研究大綱 7
二、材料及方法 10
2.1類風溼性關節炎實驗小鼠模型以及取樣設計 10
2.2唾液蛋白質體研究分析 11
2.2.1取樣方法 11
2.2.2唾液流率測定 11
2.2.3蛋白質濃度定量 12
2.2.4質譜儀分析 12
2.3血清蛋白質體研究分析 13
2.3.1血液取樣及血清製備方法 13
2.3.2 蛋白質序列稀釋 13
2.3.3十二烷基硫酸鈉聚丙烯酰胺凝膠電泳 13
2.4口腔黏膜微生物分析 14
2.4.1口腔黏膜取樣 14
2.4.2口腔黏膜DNA萃取 15
2.4.3 16S rRNA聚合酶連鎖反應 16
2.4.4盲腸黏膜與盲腸內容物取樣 16
2.4.5盲腸黏膜與內容物DNA萃取 17
2.4.6 模式小鼠之糞便取樣 17
2.4.7模式小鼠之糞便DNA萃取 18
2.4.8 DNA純度與濃度測定 18
2.4.9次世代DNA定序 18
2.4.10次世代定序軟體分析平台 19
2.5模式小鼠生理紀錄 20
2.5.1模式小鼠體重與飼料進食量測量 20
2.5.2模式小鼠盲腸顯微鏡觀察 20
2.6實驗儀器與化學藥品 20
2.6.1實驗儀器 20
2.6.2化學藥品 21
三、結果 23
3.1唾液蛋白質分析 23
3.1.1取樣類風濕性關節炎小鼠唾液之方法 23
3.1.2類風濕性關節炎小鼠唾液體積變化 23
3.1.3類風濕性關節炎之小鼠唾液流速變化 23
3.1.4類風濕性關節炎小鼠之唾液蛋白質濃度 24
3.1.5質譜儀分析模式小鼠唾液之條件最適化 24
3.1.6類風濕性關節炎小鼠唾液蛋白質圖譜圖分析 26
3.2血清蛋白質電泳分析 27
3.2.1類風濕性關節炎小鼠血液蛋白質濃度變化 27
3.2.2類風濕性關節炎小鼠血清之一維電泳分析 27
3.3口腔黏膜實驗分析 28
3.4盲腸黏膜與盲腸內容物菌群分析 28
3.5模式小鼠生理實驗 29
3.5.1 模式小鼠每週體重與飼料用量記錄 29
3.5.2 模式小鼠盲腸顯微鏡外觀觀察 29
四、討論 30
4.1質譜儀分析唾液方法條件最適化 30
4.2類風濕性關節炎小鼠唾液蛋白質分析 31
4.3類風濕性關節炎小鼠血清蛋白質分析 32
4.4類風濕性關節炎小鼠口腔黏膜分析 34
4.5類風濕性關節炎小鼠盲腸黏膜與內容物菌群分析 35
4.6類風溼性關節炎小鼠糞便實驗分析 37
4.7類風濕性關節炎小鼠之生理實驗 37
五、討論 39
參考文獻 42
附錄 52
圖附錄 52
表附錄 72
圖目錄
圖一、模式小鼠唾液體積量、流速以及蛋白質濃度 53
圖二、質譜儀分析健康小鼠唾液樣本之條件適化 54
圖三、各週類風溼性關節炎小鼠唾液分析圖譜 55
圖四、質譜儀分析唾液原始含量之二維圖 56
圖五、模式小鼠血清之蛋白質濃度及取樣 57
圖六、類風濕性關節炎之一維電泳分析 58
圖七、比對在發炎情形下之血清蛋白質相對強度圖 59
圖八、類風溼性關節炎模式小鼠血清之蛋白質強度變化長條圖 60
圖九、模式小鼠之口腔黏膜樣本PCR產物之洋菜膠電泳結果 61
圖十、模式小鼠盲腸黏膜及內容物菌相結果 62
圖十一、類風溼性關節炎模式小鼠生理紀錄 63
圖十二、類風溼性關節炎模式小鼠盲腸之顯微鏡觀察 64
表目錄
表一、類風濕性關節炎模式小鼠唾液之樣本體積量 66
表二、類風濕性關節炎模式小鼠唾液蛋白質濃度 67
表三、比對類風濕性關節炎模型小鼠之各週血清蛋白質表現量強度變化 68
表四、黏膜與內容物之DNA結果 69
表五、模式小鼠之糞便DNA結果 70
表六、2016年實驗模式小鼠資本資料與實驗應用 71
表七、2015實驗模式小鼠資本資料與實驗應用 72
參考文獻 1. Loreto C., Marita C., Ben W., Marissa L., Lyn M. Rheumatoid arthritis. Best Practice & Research Clinical Rheumatology, 24, 733-745 (2010).
2. Willemze A., Toes R. E., Huizinga T.W., Trouw L. A. New biomarkers in rheumatoid arthritis. The Netherlands Journal of Medicine, 70, 392-399 (2012).
3. Stastny P., Mixed lymphocyte cultures in rheumatoid arthritis. J Clin Invest, 57,148-1157 (1976).
4. Marta P., Maria D., Maria P., Renata S., Jacek S., Elwira L.,Hubert K. Galactosylation of IgG from rheumatoid arthritis (RA) patients – changes during therapy, Glycoconj J, 23,463-471 (2006).
5. Kay J. and Calabrese L. The role of interleukin-1 in the pathogenesis ofrheumatoid arthritis, Rheumatology, 43, iii2-iii9 (2004).
6. Zhang X., Zhang D., Jia H., Feng Q., Wang D., Liang D., Wu X., Li J., Tang L., Li Y., Lan Z., Chen B., Li Yi., Zhong H., Xie H., Jie Z., Chen W., Tang S., Xu Xu X., Wang X., Cai X., Liu S., Xia Y., Li J., Qiao X. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. nature medicine, 21, 895-907 (2015).
7. Ahmed E. H., Témoin S., Chakaki A., Askari A., Fitzgerald S., Marcus R.E., Han Y.W., Bissada N.F. Identification of oral bacterial DNA in synovial fluid of arthritis patients with native and failed prosthetic joints. J Clin Rheumatol, 18, 117-121 (2012).
8. Moshe T. and Shoenfeld Y. Anti-Heat-Shock Protein Antibodies in Rheumatic and Autoimmune Diseases. Seminars in Arthritis and Rheumatism, 26, 558-563 (1996).
9. Shen T. C., Lin C. L., Chen C. H., Tu C.Y., Hsia T.C., Shih C.M., Hsu W.H., Sung F. C. Increased risk of chronic obstructive pulmonary disease in patients with rheumatoid arthritis: a population-based cohort study. Q J Med. 107, 537-543 (2014).
10. Prajjwal K. Ocular manifestation in Rheumatoid arthritis and Juvenile rheumatoid arthritis, Journal of Kathmandu Medical College. 2. 181-189 (2013).
11. He J., Ding Y., Feng M., Guo J., Sun X., Zhao J., Yu D., Li Z. Characteristics of Sjo¨ gren’s syndrome in rheumatoid arthritis. Rheumatology. 52, 1084- 1089 (2013).
12. Kyle S. and Jorge A. T. What are Biomarkers? Curr Opin HIV AIDS. 5, 463-466 (2010).
13. Tamsin M. L., William H. R. Biomarkers for the rheumatoid arthritis: Making it personal, Scand J Clin Lab Invest Suppl. 242, 79-84 (2010).
14. Suurmond J., Schuerwegh A.J., Toes R.E. Anti-citrullinated protein antibodies in rheumatoid arthritis: a functional role for mast cells and basophils?. Ann Rheum Dis, 70 (2011).
15. Mikael B., Marije K. V., Johan R., Ewa B., Rikard H., Rene E.M. T., Lars K., Leendert A. T. and Solbritt R.D. Anti-carbamylated protein antibodies in the pre-symptomatic phase of rheumatoid arthritis, their relationship with multiple anti-citrulline peptide antibodies and association with radiological damage, Arthritis Research & Therapy, 17 (2015).
16. Niewold T.B., Harrison M.J., Paget S.A. Anti-CCP antibody testing as a diagnostic and prognostic tool in rheumatoid arthritis, Q J Med, 100,193-201. (2007).
17. 周昌德主編,風濕病學,合記圖書出版社,台北市,民國一百零一年。
18. Stephan D. G., Gauldie, Daniel S. M., Christopher J. C. b, Iain P. C. A robust model of adjuvant-induced chronic unilateral arthritis in two mouse strains. Journal of Neuroscience Methods, 139, 281-291 (2004).
19. Jose U S., Andrew S., Randy S L., Nicola S., Carles U., Craig B., Tim R., Vincenzo C., Eric G P., Steven B. A., Curtis H., Dan R. L. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis, eLife, 2 (2013).
20. Michael J. W., Ann M. O., Doyle V. W., b Gregory J. P. Draft Genome Sequences of the Altered Schaedler Flora, a Defined Bacterial Community from Gnotobiotic Mice, Genome Announcements, 2 (2014).
21. Malin V. J., Nicolas D., Karl A. B., Ellen B., Kathrine S. Impaired Salivary Gland Function in NOD Mice, ARTHRITIS & RHEUMATISM, 54, 2300-2305 (2006).
22. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem., 72, 248-254 (1976).
23. R. John W., Ilma T., Kevin J. S., Nest M., Aurélie B., Daniel F., Ali R. B., Johanna V., Pierre T., Timothy J. S. Oral Samples as Non-Invasive Proxies for Assessing the Composition of the Rumen Microbial Community, PLOS ONE, 11 (2016).
24. Li H., Limenitakis J. P., Tobias F., Markus B. G., Melissa A. L., Madeleine W., Sandrine B., Irene K., Jamie A. M., Sandra R., Bettina S., Jens V. S., Bärbel S., Uwe S., Kathy D. M., Andrew J. M. The outer mucus layer hosts a distinct intestinal microbial niche, NATURE COMMUNICATIONS (2015).
25. Lee Y. S., Wei K. W., Suraphan P., Chi T. H., Ching H. K., Ming S. W., Lee Y. S. Dietary allicin reduces transformation of L-carnitine to TMAO through impact on gut microbiota, Journal of Functional Foods, 15, 408- 417 (2015).
26. Matthew L Stoll. Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Research & Therapy, 16, 486-496 (2014).
27. Connie W.Y., Ha C.W., Lam Y.Y., Holmes A.J. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World J Gastroenterol, 20, 16498-16517 (2014).
28. Alessandro G. Osteoporosis in Rheumatoid Arthritis, Insights and Perspectives in Rheumatology, 13, 75-92 (2012).
29. CHOI D., Casey A. T. H., Crockard H. A. Neck problems in rheumatoid arthritis—changing disease patterns, surgical treatments and patient’s expectations, Rheumatology, 45, 1183-1184 (2006).
30. Sharon K., Wendy L. P., Robert D. B. Atypical Rheumatoid Nodules: A Possible Precursor to a Rheumatoid Variant in a Rheumatoid-Factor-Negative Patient. Case Report, HAND, 4, 62-65 (2009).
31. Anne A B., Peyman E., Dmitry S., Andreea C N., Etienne L., John A W., Yvonne M. Towards further defining the proteome of mouse saliva. Proteome Science, 13 (2015).
32. Jacob S., DiCarlo L.M., Kruger C., Johnson W.D., Kappen C., Richards B.K. Gene expression in salivary glands: effects of diet and mouse chromosome 17 locus regulating macronutrient intake, Physiological Reports, 3 (2015).
33. Gao K., Zhou H., Zhang L., Lee J. W., Zhou Q., Hu S., Wolinsky L. E., Farrell J., Eibl G., Wong D. T. Systemic Disease-Induced Salivary Biomarker Profiles in Mouse Models of Melanoma and Non-Small Cell Lung Cancer. PLoS one, 4 (2009).
34. Jonsson M.V., Delaleu N., Brokstad K.A., Berggreen E., Skarstein K. 2006. Impaired salivary gland function in NOD mice: association with changes in cytokine profile but not with histopathologic changes in the salivary gland. Arthritis Rheum., 54, 2300-2305 (2006).
35. Nicolas D., Immervoll H., Cornelius J., Jonsson R. Biomarker profiles in serum and saliva of experimental Sjögren′s syndrome: associations with specific autoimmune manifestations. Arthritis Research & Therapy, 10 (2008).
36. Raúl F. G., Susana S., Nuno M., Julián R. G., M., Teresa E. B., Victor d. F. New Anthocyanin−Human Salivary Protein Complexes. Langmuir, 31, 8392-8401 (2015).
37. Perez-Gregorio M.R., Mateus N., de Freitas V. Rapid Screening and Identification of New Soluble Tannin−Salivary Protein Aggregates in Saliva by Mass Spectrometry (MALDI-TOF-TOF and FIA-ESI-MS). Langmuir, 30, 8528-8537 (2014).
38. Driss Z., Rawe I., Singh M., Brown A., Kublin C.L., Dawson K., Haddon W.F., White E.L., Hanley K.M., Tusé D., Malyj W., Papas A. Discovery of putative salivary biomarkers for Sjögren’s syndrome using high resolution mass spectrometry and bioinformatics. Journal of Oral Science, 54, 61-70 (2012).
39. Hu S., Yu T., Xie Y., Yang Y., Li Y., Zhou X., Tsung S., Rachel R. L., Joseph A. L., Wong D. T. Discovery of Oral Fluid Biomarkers for Human Oral Cancer by Mass Spectrometry. CANCER GENOMICS & PROTEOMICS, 4, 55-64 (2007).
40. Gary J. O., Jeremy A. F., Claudia I. R., Shobha S., Jon S. W., Brenda A. W., Gary J. O. Critical Evaluation of Two Primers Commonly Used for Amplification of Bacterial 16S rRNA Genes, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 74, 2461-2470 (2008).
41. Johnson, J. L. Bacteroides caccae sp. nov., Bacteroides merdae sp. nov., and Bacteroides stercoris sp. nov. isolated from human feces, Int J Syst Bacteriol, 36, 499-501 (1986).
42. Dan R L., Jose U S., Andrew S., Randy S L., Nicola S., Carles U., Craig B., Tim R. ,Vincenzo C., Eric G P., Steven B A., Curtis H. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis, eLIFE, 2 (2013).
43. Bronwyn R. R., O′Rourke J.L., Neilan B.A., Vandamme P., On S.L., Fox J.G., Lee A. Mucispirillum schaedleri gen. nov., sp. nov., a spiral-shaped bacterium colonizing the mucus layer of the gastrointestinal tract of laboratory rodents, International Journal of Systematic and Evolutionary Microbiology, 55, 1199-1204 (2005).
44. Kiss H., Kögler B., Petricevic L., Sauerzapf I., Klayraung S., Domig K., Viernstein H., Kneifel W. Vaginal Lactobacillus microbiota of healthy women in the late first trimester of pregnancy, Journal of Obstetrics and Gynaecology, 114, 1402-1407 (2007).
45. Neville B.A., Toole P.W. O. Probiotic properties of Lactobacillus salivarius and closely related Lactobacillus species. Future Microbiology, 5, 759-774 (2010).
46. Alexander B., Tomas d. W., Pamela S., Christiane B., Valentin L., Moez R., Alexandre J., Rozenn D., Samira B., Hervé M. B., Alexei S., Johannes S., Nadine C. B., Valérie G. R., Maarten v. d. G., Emmanuelle M. Genome Sequence of “Candidatus Arthromitus” sp. Strain SFB-Mouse-NL, a Commensal Bacterium with a Key Role in Postnatal Maturation of Gut Immune Functions. Genome Announc, 2 (2014).
47. Ridlon J.M., Ikegawa S., Alves J.M., Zhou B., Kobayashi A., Iida T., Mitamura K., Tanabe G., Serrano M., De Guzman A., Cooper P., Buck G.A., Hylemon P.B. Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens, J Lipid Res, 54, 2437-2449 (2013).
48. Zhongming G., Yang F., Nancy S. T., Masahiro O., Martin F. P., David B. S., James G. F. Colonization Dynamics of Altered Schaedler Flora Is Influenced by Gender, Aging, and Helicobacter hepaticus Infection in the Intestines of Swiss Webster Mice, AEM, 72, 5100-5103 (2006).
49. Akio N., Yoshimura S., Nakane A. Alteration of Intestinal Microbiota in Mice Orally Administered with Salmon Cartilage Proteoglycan, a Prophylactic Agent. PLOS one, 8 (2013).
50. Tracy D. W. and Wilkins. J. H. Eubacteriurn plexicaudatum sp. nov., an Anaerobic Bacterium with a Subpolar Tuft of Flagella, Isolated from a Mouse Cecum, Journal of systematic bacteriology, 24, 408-411 (1974).
51. Moore W. E. C., Johnson J. L., Holdeman L. V. Emendation of Bacteroidaceae and Butyrivibrio and Descriptions of Desulfornonas gen. nov. and Ten New Species in the Genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Journal of systematic bacteriol, 26, 238-252 (1976).
52. Alexander V. G., Carlo D. N., Michael R. Human Infection with Halomonas venusta following Fish Bite, Journal of clinical microbiology, 38, 3123-3124 (2000).
53. Muriel D., Elaine E. V., Caroline M. P., Willem M. de V., Akkermansia muciniphila gen. nov., sp. nov.,a human intestinal mucin-degrading bacterium, Journal of Systematic and Evolutionary Microbiology, 54, 1469-1476 ( 2004).
54. Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F., Liang S., Zhang W., Guan Y., Shen D., Peng Y., Zhang D., Jie Z., Wu W., Qin Y., Xue W., Li J., Han L., Lu D., Wu P., Dai Y., Sun X., Li Z., Tang A., Zhong S. A metagenome-wide association study of gut microbiota in type 2 diabetes, NATURE, 490, 55-60 (2012).
55. Wasko M. C., Kay J., Hsia E.C., Rahman M.U. Diabetes Mellitus and Insulin Resistance in Patients With Rheumatoid Arthritis: Risk Reduction in a Chronic Inflammatory Disease, Arthritis Care & Research, 63, 512-521 (2011).
56. Dingemanse C., Belzer C., van Hijum S., Günthel M., Salvatori D., den Dunnen J.T., Kuijper E.J., Devilee P., de Vos W.M., van Ommen G.B., Robanus M. E.C. Akkermansia muciniphila and Helicobacter typhlonius modulate intestinal tumor development in mice. Carcinogenesis, 36, 1388-96 (2015).
57. Elin O., Brian W. W. P., Jong W. J. J., Benjamin E., William S., Eun Y. K., Margarete M., Calvin P., Rob K., Robert G., Thomas A. D., Eleazar E., Aldons J. L. Genetic and environmental control of host-gut microbiota interactions. Genome Research, 25, 1558-1569 (2016).
58. Justus R., Veera K., Laura H., Noora O., Clara B., Heikki H., Willem M. de Vosa, Reetta S. Akkermansia muciniphila Adheres to Enterocytes and Strengthens the Integrity of the Epithelial Cell Layer, Applied and Environmental Microbiology, 81, 3655- 3662 (2015).
59. Akilan K., Joshua V., Haj H. A., Jin T., Sun M., Vivar N., Ytterberg A.J., Engström M., Fernandes C. C., Amara K., Magnusson M., Wigerblad G., Kato J., Jiménez A. J.M., Tyson K., Rapecki S., Lundberg K., Catrina S.B., Jakobsson P.J., Svensson C., Malmström V., Klareskog L., Wähämaa H., Catrina A.I. Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis associated autoantibody-mediated bone loss, Ann Rheum Dis., 75, 721-729 (2015).
60. Pamela F W. Diagnosis and treatment of enthesitis-related arthritis. Adolescent Health, Medicine and Therapeutics, 3, 67- 74 (2012).
61. Christopher J. D., Brittnacher M.J., Westerhoff M., Hayden H.S., Radey M., Hager K.R., Marquis S.R., Miller S.I., Zisman T.L., Low Level Engraftment and Improvement following a Single Colonoscopic Administration of Fecal Microbiota to Patients with Ulcerative Colitis. PLOS ONE, 8 (2015).
62. Naamah L. Z., Atkinson B.J., Franklin S.W., Mitchell P.D., Snapper S.B., Comstock L.E., Bousvaros A. Characterization of Adherent Bacteroidales from Intestinal Biopsies of Children and Young Adults with Inflammatory Bowel Disease, PLOS ONE, 8 (2013).
63. Nittaya M., Frida F., Eden T. Heat-treated high-fat diet modifies gut microbiota and metabolic markers in apoe−/− mice, Nutrition & Metabolism, 13 (2016).
64. Munro R., Capell H. Prevalence of low body mass in rheumatoid arthritis: association with the acute phase response, Annals of the Rheumatic Diseases, 56, 326-329 (1997).
65. Gerold B., Michelle E. P., Thais H. G., Chen L., He Z., Hashimoto D., Glaucia C. F., Jordi O., Kelley K. A., Jose C. C., Merad M., Bakel H. V., Sergio A. L. Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice. J. Exp. Med, 211, 457-472 (2014).
66. Kosuke M., Miyai K., Iwaya K., Asano T., Tamai S., Matsubara O., Tsuda H., Fatty acid synthase overexpression in adult testicular germ cell tumors: potential role in the progression of non-seminomatous germ cell tumors, Virchows Archiv, 464, 221-228 ( 2014).
67. Juan P. L. R., Juan P. L. R., Rita E. M. M., Carlos A. M., Nuria P. M., Gregory J. S. Rheumatoid arthritis and the role of oral bacteria, Journal of Oral Microbiology, 2, 5784- 5792 (2010).
68. Robert C., Valentina T., Petia K. D., Patrice D. C., Fredrik B. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling, Cell Metabolism, 22, 658-668 (2015).
69. Berry D, Schwab C, Milinovich G, Reichert J, Ben Mahfoudh K, Decker T, Engel M, Hai B, Hainzl E, Heider S, Kenner L, Müller M, Rauch I, Strobl B, Wagner M, Schleper C, Urich T, Loy A. Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis, SME, 6, 2091-2106 (2012).
70. Jürgen B., Maria S. R. A simple and reliable protocol for mouse serum proteome
profiling studies by use of two-dimensional electrophoresis and MALDI TOF/TOF mass spectrometry”, Proteome Science, 6 (2008).
指導教授 黃雪莉(Shir-Ly Huang) 審核日期 2016-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明