博碩士論文 103821019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.149.213.76
姓名 羅雅庭(Ya-Ting Lo)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討一個tRNAHis修飾酵素的生理功能
(Exploring the physiological functions of a tRNAHis-modifying enzyme)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins★ Recognition of tRNA His isoacceptors by human HisRS isoforms
★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii
★ tRNA aminoacylation by a naturally occurring mini-AlaRS★ Functional Repurposing of C-Ala Domains
★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase★ 探討Alanyl-tRNA synthetase的演化及專一性
★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能
★ 探討酵母菌Valyl-tRNA synthetase的生化活性★ 酵母菌轉譯起始機制的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Aminoacyl-tRNA synthetases (aaRSs)是一群必要的轉譯酵素,它們的主要功能是將胺基酸接到相對應的 tRNA上,因此aaRSs必須精確地辨認其相對應tRNA,蛋白質轉譯才不會出錯,Histidyl-tRNA synthetase (HisRS)主要辨識histidine tRNA (tRNAHis)上的G-1,G-1只存在於tRNAHis,不存在於其他種類tRNA。在酵母菌粒線體中,G-1是由粒線體的基因體直接轉錄而來;而細胞質中G-1則是藉由tRNAHis guanylyltransferase (Thg1)以後修飾作用的方式加上去的,Thg1辨識tRNAHis的反密碼(anticodon),並且以其3′–5′聚合酶的活性將G-1加在tRNAHis的5’端。然而我的實驗結果顯示人類和果蠅的Thg1都帶有一段粒線體標的訊號(mitochondria targeting signal;MTS),這個訊號可以幫助Thg1進入粒線體。此外,我也發現阿拉伯芥具有兩個THG1基因,這二個基因的序列比酵母菌的THG1長許多,因此我想進一步探討哪一個才是具功能的阿拉伯芥Thg1。黏菌具有多個Thg1-Like Proteins (TLPs),可以用來編輯mitochondrial tRNA (mt-tRNA),我希望利用此特性建構一個3’→5’聚合酶酵素,增加其應用性。雖然線蟲不具有THG1基因,但它本身的細胞質tRNAHis 卻保有G-1,我的實驗結果顯示:線蟲的HisRSs偏好具有G-1的tRNAHis,該酵素如何胺醯化不具G-1的粒線體tRNAHis仍是未知,我希望透過研究各物種間的Thg1及HisRS特性,進一步解開HisRS的的作用機制。
摘要(英) Aminoacyl-tRNA synthetases (aaRSs) are a family of essential translation enzymes, each of which catalyzes the coupling of a specific amino acid to its cognate tRNAs. Histidine tRNA (tRNAHis) is unique among tRNA species as it carries an additional nucleotide at its 5′ terminus. This unusual G-1 residue is the major identity element of tRNAHis, and is essential for recognition by histidyl-tRNA synthetase (HisRS). In yeast, G-1 of mitochondrial tRNAHis (denoted as tRNAmHis) is genome-encoded, while G-1 of cytoplasmic tRNAHis (denoted as tRNAnHis) is added post-transcriptionally by tRNAHis guanylyltransferase (Thg1). Thg1 possesses efficient 3′–5′ polymerase activity that specifically adds the G-1 residue by recognizing the anticodon of tRNAHis. We reported herein that the Thg1 homologues of Homo sapiens and Drosophila melanogaster possess a mitochondrial targeting signal (MTS) that can deliver the protein into mitochondria for functioning. Moreover, we found that Arabidopsis thaliana contains two THG1 genes, the sequences of which consist of two similar repeats. The specific aims of this project are to elucidate the mechanism by which G-1 can be specifically added to tRNAHis and to decipher how certain HisRSs can recognize tRNAHis without G-1. In addition, we would like to characterize the four Thg1-like proteins (TLPs) of Dictyostelium discoideum. Despite the fact that Caenorhabditis elegans lacks a THG1 gene, its HisRS can recognize both cytoplasmic and mitochondrial tRNAHis isoacceptors. Our results showed that C. elegans HisRS preferred tRNAHis with G-1. It is still unclear how this enzyme can recognize the mitochondrial tRNAHis without G-1.
關鍵字(中) ★ 修飾酵素 關鍵字(英) ★ HisRS
★ Thg1
★ tRNAHis
論文目次 中文摘要 I
英文摘要 II
誌 謝 III
目 錄 IV
圖目錄 VII
表目錄 VIII
縮寫檢索表 IX
第一章 緒論 1
1.1 Aminoacyl-tRNA synthetases (aaRSs)的簡介 1
1.1.1 aaRS的功能 1
1.1.2 aaRSs 的分類 2
1.1.3 aaRSs 的分子演化 2
1.2 Histidyl-tRNA synthetase (HisRS)的簡介 3
1.2.1 HisRS的生化特性 3
1.2.2 HisRS辨識tRNAHis的G-1 3
1.2.3 HisRS辨識tRNAHis的N73 4
1.3 tRNAHis guanylyltransferase (Thg1)的簡介 4
1.3.1 Thg1的生理功能 4
1.3.2 Thg1的G-1加入反應 5
1.4 Thg1-like proteins (TLPs)的簡介 5
1.4.1 TLP的生理功能 5
1.4.2 TLP的生化活性 6
1.5 Acr1p的簡介 6
1.6 研究目的 7
第二章 材料與方法 9
2.1 菌株、載體及培養基 9
2.2 大腸桿菌勝任細胞的製備與轉型作用 10
2.2.1大腸桿菌勝任細胞的製備 11
2.2.2大腸桿菌勝任細胞的轉型作用 (transformation) 11
2.3 酵母菌勝任細胞的製備與轉型作用 12
2.3.1酵母菌勝任細胞的製備 12
2.3.2酵母菌勝任細胞的轉型作用 12
2.4 質體之選殖 13
2.5 功能性互補試驗 (Complementation)―測試細胞質功能 13
2.6 功能性互補試驗 (Complementation)―測試粒線體功能 14
2.7 蛋白質純化 (Protein purification) 15
2.8 SDS-PAGE之蛋白質分離 16
2.9 西方點墨法 (Western Blotting) 17
2.10 酵母菌融合蛋白質的表現和純化 18
2.11 aaRS胺醯化反應 (aminoacylation assay) 21
第三章 結果 23
3.1 具有Thg1的物種 23
3.1.1 不同物種Thg1的差異性 23
3.1.2人類Thg1和果蠅Thg1的粒線體標的訊號 23
3.1.3不同物種Thg1的功能 24
3.1.4酵母菌Thg1送入粒線體的影響 24
3.1.5阿拉伯芥THG1基因的功能 25
3.2 Thg1酵素之應用 26
3.2.1 Thg1和TLP的功能應用 26
3.2.2 探討Thg1-TLP融合蛋白的功能 26
3.2.3 Thg1-Arc1p融合蛋白的生物毒性 27
3.3 不具Thg1以及TLP的物種 28
3.3.1 線蟲tRNAHis的特別之處 28
3.3.2 G-1對線蟲HisRS辨識的重要性 28
3.3.3 線蟲HisRS辨識tRNAHis的生化活性 29
第四章 討論 31
4.1 Thg1演化上的意義 31
4.2 Thg1融合蛋白的應用性 32
4.3線蟲HisRS 的生化活性 33
參考文獻 34
圖表 38
MEI引子及質體清單 56
參考文獻 Abad MG, Long Y, Willcox A, Gott JM, Gray MW, Jackman JE. 2011. A role for tRNAHis guanylyltransferase (Thg1)-like proteins from Dictyostelium discoideum in mitochondrial 5′-tRNA editing. RNA 17:613-623.

Abad MG, Rao BS, Jackman JE. 2010. Template-dependent 3′-5′ nucleotide addition is a shared feature of tRNAHis guanylyltransferase enzymes from multiple domains of life. Proc Natl Acad Sci U S A 107:674-679.

Burbaum JJ, Schimmel P. 1992. Amino acid binding by the class I aminoacyl-tRNA synthetases: role for a conserved proline in the signature sequence. Protein Sci 1:575-581.

Burbaum JJ, Schimmel P. 1991. Assembly of a class I tRNA synthetase from products of an artificially split gene. Biochemistry 30:319-324.

Carter CW, Jr. 1993. Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem 62:715-748.

Chang KJ, Wang CC. 2004. Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem 279:13778-13785.

Dever TE, Hinnebusch AG. 2005. GCN2 whets the appetite for amino acids. Mol Cell 18:141-142.

Frechin M, Kern D, Martin RP, Becker HD, Senger B. 2010. Arc1p: anchoring, routing, coordinating. FEBS Lett 584:427-433.

Giege R, Sissler M, Florentz C. 1998. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 26:5017-5035.

Gu W, Jackman JE, Lohan AJ, Gray MW, Phizicky EM. 2003. tRNAHis maturation: an essential yeast protein catalyzes addition of a guanine nucleotide to the 5′ end of tRNAHis. Genes Dev 17:2889-2901.

Heinemann IU, Nakamura A, O′Donoghue P, Eiler D, Soll D. 2012. tRNAHis-guanylyltransferase establishes tRNAHis identity. Nucleic Acids Res 40:333-344.

Heinemann IU, Randau L, Tomko RJ, Jr., Soll D. 2010. 3′-5′ tRNAHis guanylyltransferase in bacteria. FEBS Lett 584:3567-3572.

Ibba M, Soll D. 2000. Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617-650.

Jackman JE, Gott JM, Gray MW. 2012. Doing it in reverse: 3′-to-5′ polymerization by the Thg1 superfamily. RNA 18:886-899.

Jackman JE, Phizicky EM. 2006a. tRNAHis guanylyltransferase adds G-1 to the 5′ end of tRNAHis by recognition of the anticodon, one of several features unexpectedly shared with tRNA synthetases. RNA 12:1007-1014.

Jackman JE, Phizicky EM. 2006b. tRNAHis guanylyltransferase catalyzes a 3′-5′ polymerization reaction that is distinct from G-1 addition. Proc Natl Acad Sci U S A 103:8640-8645.

Joyce CM, Steitz TA. 1995. Polymerase structures and function: variations on a theme? J Bacteriol 177:6321-6329.

Long Y, Jackman JE. 2015. In vitro substrate specificities of 3′-5′ polymerases correlate with biological outcomes of tRNA 5′-editing reactions. FEBS Lett 589:2124-2130.

Martin G, Keller W. 1996. Mutational analysis of mammalian poly(A) polymerase identifies a region for primer binding and catalytic domain, homologous to the family X polymerases, and to other nucleotidyltransferases. EMBO J 15:2593-2603.

Martinis SA, Plateau P, Cavarelli J, Florentz C. 1999. Aminoacyl-tRNA synthetases: a family of expanding functions. Mittelwihr, France, October 10-15, 1999. EMBO J 18:4591-4596.

McClain WH. 1993. Rules that govern tRNA identity in protein synthesis. J Mol Biol 234:257-280.

Nameki N, Asahara H, Shimizu M, Okada N, Himeno H. 1995. Identity elements of Saccharomyces cerevisiae tRNAHis. Nucleic Acids Res 23:389-394.

Preston MA, Phizicky EM. 2010. The requirement for the highly conserved G-1 residue of Saccharomyces cerevisiae tRNAHis can be circumvented by overexpression of tRNAHis and its synthetase. RNA 16:1068-1077.
Price DH, Gray MW. 1999. A novel nucleotide incorporation activity implicated in the editing of mitochondrial transfer RNAs in Acanthamoeba castellanii. RNA 5:302-317.

Rao BS, Jackman JE. 2015. Life without post-transcriptional addition of G-1: two alternatives for tRNAHis identity in Eukarya. RNA 21:243-253.

Rao BS, Maris EL, Jackman JE. 2011. tRNA 5′-end repair activities of tRNAHis guanylyltransferase (Thg1)-like proteins from Bacteria and Archaea. Nucleic Acids Res 39:1833-1842.

Rao BS, Mohammad F, Gray MW, Jackman JE. 2013. Absence of a universal element for tRNAHis identity in Acanthamoeba castellanii. Nucleic Acids Res 41:1885-1894.

Ribas de Pouplana L, Schimmel P. 2001. Two classes of tRNA synthetases suggested by sterically compatible dockings on tRNA acceptor stem. Cell 104:191-193.

Ripmaster TL, Shiba K, Schimmel P. 1995. Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc Natl Acad Sci U S A 92:4932-4936.

Rosen AE, Brooks BS, Guth E, Francklyn CS, Musier-Forsyth K. 2006. Evolutionary conservation of a functionally important backbone phosphate group critical for aminoacylation of histidine tRNAs. RNA 12:1315-1322.

Schimmel P. 1987. Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu Rev Biochem 56:125-158.

Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19-27.

Simader H, Hothorn M, Kohler C, Basquin J, Simos G, Suck D. 2006. Structural basis of yeast aminoacyl-tRNA synthetase complex formation revealed by crystal structures of two binary sub-complexes. Nucleic Acids Res 34:3968-3979.

Sprinzl M, Vassilenko KS. 2005. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 33:D139-140.

Yan W, Francklyn C. 1994. Cytosine 73 is a discriminator nucleotide in vivo for histidyl-tRNA in Escherichia coli. J Biol Chem 269:10022-10027.

Yuan J, Gogakos T, Babina AM, Soll D, Randau L. 2011. Change of tRNA identity leads to a divergent orthogonal histidyl-tRNA synthetase/tRNAHis pair. Nucleic Acids Res 39:2286-2293.

Yue D, Maizels N, Weiner AM. 1996. CCA-adding enzymes and poly(A) polymerases are all members of the same nucleotidyltransferase superfamily: characterization of the CCA-adding enzyme from the archaeal hyperthermophile Sulfolobus shibatae. RNA 2:895-908.
指導教授 王健家(Chien-Chia Wang) 審核日期 2016-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明