博碩士論文 103821021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.222.69.152
姓名 葉辰瑋(Chen-Wei Yeh)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 細菌降解辛基苯酚聚氧乙基醇酵素活性分析: 醇類脫氫酶、醛類脫氫酶、乙醯輔酶A合成酶、 異檸檬酸裂解酶及蘋果酸合成酶
(Enzyme activity involved in bacterial degradation of octylphenol polyethoxylate:alcohol dehydrogenase, aldehyde dehydrogenase, acetyl-CoA synthetase, isocitrate lyase and malate synthase)
相關論文
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究★ 辛基苯酚之分解:分解菌和生物復育之菌相研究
★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性★ AtNPR1轉殖番茄之性狀分析及抗病機制研究
★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究★ 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應
★ 以功能性蛋白質體學研究Pseudomonas putida TX2生長於 辛基苯酚聚氧乙基醇與辛基苯酚之代謝與逆境反應★ 以功能性基因體學研究細菌異化辛基苯酚 聚氧乙基醇及抗逆境之基因
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 烷基苯酚聚氧乙基醇 (Alkylphenol polyethoxylate, APEOn),包含:辛基苯酚聚氧乙基醇 (Octylphenol polyethoxylate, OPEOn) 和壬基苯酚聚氧乙基醇 (Nonylphenol polyethoxylate, NPEOn),屬於非離子界面活性劑,廣泛用於工業、農業與家庭用途。一般家庭、河川底泥與都市廢水系統中皆發現此類化合物之累積。APEOn在環境中會經由微生物降解其ethyleoxylate鏈,產生一些代謝產物,如壬基酚 (nonylphenol) 和辛基酚 (octylphenol),這些代謝物將會累積在環境和生物體內,對生物帶來慢性毒性及內分泌干擾活性。Pseudomonas nitroreducens TX1為從放流水/灌溉渠道底泥中分離出的細菌,能以高濃度之APEOn為唯一碳源生長。在蛋白體學及transcriptome (RNA-seq) 分析中發現到P. nitroreducens TX1以0.5% OPEOn為唯一碳源生長時,其alcohol dehydrogenase、aldehyde dehydrogenase及acetyl-CoA synthetase的表現量,明顯高於以0.5% succinate為唯一碳源生長的菌體,因此使用以OPEOn為唯一碳源生長的P. nitroreducens TX1取其細胞粗萃取液,分別進行此三種酵素之活性分析,發現會比以succinate為唯一碳源生長的菌體細胞粗萃取液,每單位蛋白質量中酵素活性分別增加4.1倍、6.9倍及2.1倍,再經由基質特異性比較結果發現參與OPEOn生物轉化的alcohol dehydrogenase,發現只對於APEOn系列界面活性劑具有高度基質專一性的酵素,對於其他PEG系列界面活性劑與乙醇則無活性。P. nitroreducens TX1的基因體序列草圖已於2014年1月發表,為APEOn的降解基因定位與分析提供基本資訊,本研究使用轉位子突變法 (Transposon mutagenesis) 製作無法生長在此界面活性劑的突變株。目前自約30,000株突變菌株中篩選出145株以OPEOn為唯一碳源培養,而生長緩慢或無法生長的突變株;其中130株突變菌株已完成突變基因鑑定,發現6株突變株發生在isocitrate lyase基因上及8株於malate synthase基因,他們皆無法生長於以OPEOn為唯一碳源的培養基中。因此使用以OPEOn為唯一碳源生長的P.nitroreducens TX1細胞粗萃取液,分別進行isocitrate lyase和malate synthase之酵素活性分析,發現會比以succinate為唯一碳源生長的菌體細胞粗萃取液,每單位蛋白質量中酵素活性分別增加8.9倍及1.7倍。此外,我們成功將P. nitroreducens TX1的isocitrate lyase表達在E. coli中,也以相同酵素活性法進行基質專一性測試,顯示只對isocitrate具活性,對於OPEOn及結構類似物沒有任何活性,因之判斷isocitrate lyase不是直接參與降解OPEOn EO chain結構的生物降解酵素,而是發生在下游代謝中,將轉化後代謝產物進入glyoxylate cycle的關鍵酵素。最後根據蛋白質體、代謝產物分析、轉位子突變法突變菌株的突變庫及酵素活性測試結果,推測OPEOn可能經由P. nitroreducens TX1細胞外膜上的運輸蛋白質,進入periplasm中後經由ABC transporter進入細胞內,經alcohol dehydrogenase進行EO鏈末端醇基氧化為醛類,並由aldehyde dehydrogenase氧化為羧酸,再經由EO鏈cleavage酵素將EO鏈斷開產生acetate後,使用acetyl-CoA synthetase轉化成acetyl-coA進入glyoxylate cycle中,並產生succinate進入中央代謝途徑TCA cycle以轉化碳源供P. nitroreducens TX1生長,故此代謝步驟為本研究提出P. nitroreducens TX1使用OPEOn的推測代謝途徑。
摘要(英) Alkylphenol polyethoxylates (APEOn) that include octylphenol polyethoxylate (OPEOn) and nonylphenol polyethoxylate (NPEOn) are non-ionic surfactants and widly used in industy, agriculture and domestic purposes. APEOn are often found as pollutants in natural aquatic environments and in raw municipal wastewater. Ethyleoxylate chain of APEOn is degraded by microorganisms in environment to produce estrogenic metabolites, such as nonylphenol and octylphenol. They accumulate in environments and cause chronic ecotoxicity as endocrine disrupters to aquatic organisms, wildlife, and humans. Pseudomonas nitroreducens TX1 was found from sediment of irrigation farmland and was capable to use a wide range concentrations of APEOn, as a sole carbon source. By proteomics and transcriptome RNA seq analysis, alcohol dehydrogenases, aldehyde dehydrogenases and acetyl-CoA synthetase have higher expression level when growth in MSB medium containing 0.5% OPEOn as a sole carbon source than that in 0.5% succinate. Therefore, crude extract of P. nitroreducens TX1 growth in 0.5% OPEOn was used to optimize the activity assay for three enzyme. The enzyme activities of alcohol dehydrogenase, aldehyde dehydrogenase and acetyl-CoA synthetase have been shown 4.1, 6.9 and 2.1 fold increase than those in 0.5% succinate. The substract specificty of OPEOn-dependent alcohol dehydrogenases was demonstrated that APEOn related compounds are the enzyme substrates but not using polyethoxyl glycol (PEG) and ethanol. Due to the draft genome sequence of P. nitroreducens TX1 was already published and provides basal informations in investigating gene loci and sequence related to significant roles in alkylphenol polyethoxylate degradation. Transposon mutagenesis was used to create mutant library of P. nitroreducens TX1 for the screening of growth defected mutants on OPEOn. Over 30,000 mutants have been isolated after triparental mating between transposon DNA containg E.coli and P. nitroreducens TX1. 145 mutants grew slowly or did not grow on OPEOn medium. The mutated genes in 130
mutants have been identified. Among these mutants, six transposon insertion mutants and eight mutants were idendifed in isocitrate enzyme and malate synthase, respectively. Therefore, the two enzyme were selected for further enzymatical activity study. The two enzymes have 8.9 fold and 1.7 fold increased in their activities in crude extracts from growth in OPEOn MSB medium than in succinate MSB medium. Furthermore, isocitrate lyase was cloned and expressed in E.coli. The isocitrate lyase has high enzyme activity for its putative target, isocitrate, but has no activity for OPEOn and its derivatives. Therefore, according to these results, the isocitrate lyase is not directly involved in the biodegrading of OPEOn. The isocitrate lyase may paly an important role at the downstream metabolic step, converting to glyoxylate cycle. Based on current evidences by proteomics, metabolites, transposon mutagenesis mutants and enzyme activities in this study, we proposed the OPEOn metabolic pathway in P. nitroreducens TX1 that the OPEOn biotransformation follows the proposed polyethoxylate chain biodegrading mechanism that OPEOn processes the terminal end of polyethoxylatic alcohol oxidation by alcohol dehydrogenases to form terminal aldehyde and further oxidizes to form carboxylic acid, named OPEC, by aldehyde dehydrogenase. The two carbon source, acetate, was somehow produced from OPEC, and catalyzed by acetyl-CoA synthetase to form acetyl-CoA. It goes into glyoxylate cycle via isocitrate lyase and malate sythase to produce OAA and succinate in TCA cycle to support P. nitroreducens TX1 growth.
關鍵字(中) ★ 辛基苯酚聚氧乙基醇
★ 醇類脫氫酶
★ 醛類脫氫酶
★ 乙醯輔酶A合成酶
★ 異檸檬酸裂解酶
★ 蘋果酸合成酶
關鍵字(英)
論文目次 目錄Ι
表目錄Ⅱ
圖目錄Ⅲ
附錄Ⅳ
壹、緒論1
一、界面活性劑之性質與使用及其代謝物的影響1
二、代謝物之環境荷爾蒙效力2
三、烷基苯酚聚氧乙基醇之分解3
四、醇類脫氫酶分類4
五、研究動機5
貳、材料與方法7
一、菌株與培養7
二、突變基因定位與功能分析9
三、基因選殖與表達11
四、細胞粗萃取液之製備16
五、酵素活性測定17
六、酵素活性最適化19
七、實驗儀器與化學藥品21
参、結果23
一、推測OPEOn的代謝途徑及相關代謝酵素23
1.1測定P. nitroreducens TX1之生長曲線24
二、酵素活性分析測試25
2.1P. nitroreducens TX1細胞粗萃取液脫氫酶之活性分佈26
2.2P. nitroreducens TX1醇類脫氫酶酵素活性測試28
2.3P. nitroreducens TX1醛類脫氫酶及乙醯輔酶A合成酶酵素活性29
三、篩選與OPEOn相關之 P. nitroreducens TX1 突變菌株31
3.1探討P. nitroreducens TX1在不同碳源下異檸檬酸裂解酶酵素活性32
3.2探討P. nitroreducens TX1在不同碳源下蘋果酸合酶酵素活性32
3.3提出OPEOn的代謝途徑32
肆、討論34
伍、結論與建議38
陸、參考文獻40
表錄44
圖錄62
附錄84
參考文獻 王大成。2008。Pseudomonas nitroreducens TX1 中催化心基苯酚聚氧乙基醇之醇類脫氫酶得初步純化。國立中央大學生命科學研究所碩士論文。

鐘依靜。2008。Pseudomonas nitroreducens TX2 中催化心基苯酚聚氧乙基醇之醇類脫氫酶得初步純化。國立中央大學生命科學研究所碩士論文。

邱凡峰。2005。以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應。國立中央大學生命科學研究所碩士論文。

張倚嘉。2010。利用豬糞作為原料探討高溫厭氧消化系統生產沼氣之微
生物菌相。國立中央大學生命科學研究所碩士論文。

陳錫金。2005。界面活性劑Octylphenol Polyethoxylates生物降解與復育之研究。國立中央大學環境工程研究所博士論文。

楊嘉蓁。1999。Triton X-100分解菌之分離與分解酵素之特性研究。國立中央大學生命科學研究所碩士論文。

廖明隆 譯。1994。界面化學與界面活性劑。文原書局。P.13-35。

Ahel, M., Scully, F. E., Hoigné, J., and Giger, W. (1994). Photochemical degradation of nonylphenol and nonylphenol polyethoxylates in natural waters.Chemosphere, 28(7), 1361-1368.

Berg, P. (1956). Acyl adenylates: an enzymatic mechanism of acetate activation. American Society for Biochemistry and Molecular Biology.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Analytical biochemistry, 72(1-2), 248-254.

Brand, N., Mailhot, G., and Bolte, M. (1998). Degradation photoinduced by Fe (III): method of alkylphenol ethoxylates removal in water.Environmental science and technology, 32(18), 2715-2720.

Chell, R. M., Sundaram, T. K., and Wilkinson, A. E. (1978). Isolation and characterization of isocitrate lyase from a thermophilic Bacillus sp. Biochemical Journal, 173(1), 165-177.

Chen, H. J., Guo, G. L., Tseng, D. H., Cheng, C. L., and Huang, S. L.(2006). Growth factors, kinetics and biodegradation mechanism associated with Pseudomonas nitroreducens TX1 grown on octylphenol polyethoxylates. Journal of environmental management, 80(4), 279-286.

Ding, W. H., Tzing, S. H., and Lo, J. H. (1999). Occurrence and concentrations of aromatic surfactants and their degradation products in river waters of Taiwan.Chemosphere, 38(11), 2597-2606.

Frings, J., Schramm, E., & Schink, B. (1992). Enzymes involved in anaerobic polyethylene glycol degradation by Pelobacter venetianus and Bacteroides strain PG1. Applied and environmental microbiology, 58(7), 2164-2167.

Huang, S. L., Chen, H., Hu, A., Tuan, N. N., and Yu, C. P. (2014). Draft genome sequence of Pseudomonas nitroreducens strain TX1, which degrades nonionic surfactants and estrogen-like alkylphenols. Genome announcements, 2(1), e01262-13.

Hauthal, H. G. (1992). Trends in surfactants. Chimica oggi, 10(5), 9-13.

Kawai, F., Kitajima, S., Oda, K., Higasa, T., Charoenpanich, J., Hu, X., and Mamoto, R. (2013). Polyvinyl alcohol and polyethylene glycol form polymer bodies in the periplasm of Sphingomonads that are able to assimilate them.Archives of microbiology, 195(2), 131-140.

Kerem, Z., Jensen, K. A., and Hammel, K. E. (1999). Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum:evidence for an extracellular hydroquinone‐driven fenton reaction. FEBS letters,446(1), 49-54.

Konieczny, A., and Ausubel, F. M. (1993). A procedure for mapping arabidopsis mutations using co‐dominant ecotype‐specific PCR‐based markers. The Plant Journal, 4(2), 403-410.

Larsen, R. A., Wilson, M. M., Guss, A. M., and Metcalf, W. W. (2002).Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Archives of Microbiology, 178(3),193-201.

Liu, X., Ohta, T., Kawabata, T., and Kawai, F. (2013). Catalytic mechanism of short ethoxy chain nonylphenol dehydrogenase belonging to a polyethylene glycol dehydrogenase group in the GMC oxidoreductase family. International journal of molecular sciences, 14(1), 1218-1231.

Lin, Y. W., Guo, G. L., Hsieh, H. C., and Huang, S. L. (2010). Growth of Pseudomonas sp. TX1 on a wide range of octylphenol polyethoxylate concentrations and the formation of dicarboxylated metabolites. Bioresource
technology, 101(8), 2853-2859.

Liu, X., Tani, A., Kimbara, K., and Kawai, F. (2007). Xenoestrogenic short ethoxy chain nonylphenol is oxidized by a flavoprotein alcohol dehydrogenase from Ensifer sp. strain AS08. Applied microbiology and biotechnology, 73(6), 1414-1422.

Rupp, M., and Gorisch, H. (1988). Purification, crystallisation and characterization of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa. Biological chemistry Hoppe-Seyler, 369(1),431-440.

Reid, M. F., and Fewson, C. A. (1994). Molecular characterization of microbial alcohol dehydrogenases. Critical reviews in microbiology, 20(1), 13-56.

Silverstein, R. M. (1975). The determination of the molar extinction coefficient of reduced DTNB. Analytical biochemistry, 63(1), 281-282.

Tabira, Y., Nakai, M., Asai, D., Yakabe, Y., Tahara, Y., Shinmyozu, T., and Shimohigashi, Y. (1999). Structural requirements of para‐alkylphenols to bind to estrogen receptor. European Journal of Biochemistry, 262(1), 240- 245.

Von Tigerstrom, R. G., and Razzell, W. E. (1968).Aldehyde Dehydrogenase I Purification and properties of the enzyme from Pseudomonas aeruginosa. Journal of Biological Chemistry, 243(10), 2691-2702.

Van Ginkel, C. G. (1996). Complete degradation of xenobiotic surfactants by consortia of aerobic microorganisms. Biodegradation, 7(2), 151-164.

Ying, G. G., Williams, B., and Kookana, R. (2002). Environmental fate of alkylphenols and alkylphenol ethoxylates—a review. Environment international,28(3), 215-226. 
指導教授 黃雪莉(Shir-Ly Huang) 審核日期 2016-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明