博碩士論文 103825005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:13.59.218.147
姓名 高焄紋(Hsun-Wen Kao)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 閱讀效能在中文字辨認的視覺擁擠效應之影響
(The Influences of Individual Differences in Reading Proficiency on Visual Crowding Effects during Chinese Character Recognition)
相關論文
★ 表音一致性、聲旁結合度對中文閱讀的影響★ 意旁結合度、意旁表意透明度對中文閱讀的影響
★ 中文名詞動詞的具體效果的神經相關活動★ 左右半腦如何運用脈絡訊息:以分類詞與名詞意義整合中限定性與預測性效果來探討
★ 以事件相關電位探討國小學童識字量與中文構字知識發展的關係★ 語境多樣性與語意多樣性對中文字詞辨識影響之事件相關電位研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過去學者們嘗試用兩種層面去解釋閱讀能力差異的原因,一種為認知層面,而另一種為知覺層面。本研究從視知覺層面來看閱讀效能在中文字辨認表現上的差異。過去文獻提及視覺廣度大小與閱讀速度有相關性,而調節視覺廣度大小的主要決定因子為視覺擁擠效應(He, Legge, & Yu, 2013)。過去檢驗視覺廣度大小相關的研究,大多以拼音文字書寫系統為主。繁體字的型態複雜度較高,且大多為兩個以上的部件組合成複合字,目前少有研究檢驗型態較複雜的中文字對視覺廣度的影響。本篇研究目的為檢驗不同複雜度的繁體中文字如何誘導視覺擁擠效應產生,並探討不同閱讀效能的讀者受到視覺擁擠效應的干擾差異。本研究採用旁側干擾作業檢驗視覺擁擠效應對文字辨識的影響。實驗操弄三個獨變項,5種視野位置(左側與右側視野周邊、左側與右側近視野中央與視野中央)、3種文字複雜度(低、中等與高複雜度),以及是否受到旁側干擾字所包圍。透過受試者於不同情況下的辨認正確率及作答反應時間,檢驗各文字複雜度如何誘導視覺擁擠效應產生,與目標字與旁側干擾字所形成的字間擁擠效應對文字辨識的影響。接著,依據中文字唸名作業之結果將所招收的大學生分類成高低閱讀效能組,並與旁側干擾作業做連結。
實驗結果發現,目標字離視中央位置愈遠,字間擁擠對辨識目標字的干擾強度愈大,且字間擁擠效應與文字複雜度有交互作用,文字複雜度引發的視覺擁擠效應僅在字間擁擠的情況下才顯現出來。此外,當實驗參與者依閱讀效能進行分組,目標字呈現於近側時,低閱讀效能組受到文字複雜度的影響較大,而目標字呈現於遠側時,低閱讀效能組受到的字間擁擠效應干擾較強。根據結果可知,視覺擁擠效應發生於周邊視野區域,且文字複雜度對讀者的影響取決於是否處於字間擁擠的情況下,而一般閱讀的自然情境是閱讀文章或句子,因此字間擁擠效應為文字辨認歷程中的重要決定因素。其次,閱讀效能反映於區辨相鄰文字的能力隨著文字呈現的位置而有不同,因此高低閱讀效能組在辨識遠側及近側的文字時,受到字間擁擠效應與文字複雜度的干擾程度不同,顯示不同閱讀效能的視覺廣度大小在視知覺的層次為字間擁擠效應和文字複雜度所共同決定。
摘要(英)
In the past, many studies have tried to explain the differences of reading proficiency through two perspectives. One is cognitive components and another is perceptual components. This study will examine the differences of Chinese character recognition in reading proficiency from the visual perceptual view. Previous studies have mentioned that a visual crowding effect has a major impact on the visual span size, as which is related to reading speed (He et al., 2013). Factors affecting the size of the visual span have been studied in alphabetic order. However, Traditional Chinese characters are often made up of more than two radicals which are called compound words. There is a visual crowding effect formation between radical and radical in Traditional Chinese characters. There are only a few studies investigating the effects of Chinese characters with greater pattern complexities in visual span. This study aims to examine how a variety of character complexities lead to a visual crowding effect during the recognition of Traditional Chinese characters and how visual crowding effect contributes to reading proficiency of Chinese readers. In this study, flanker task was used to investigate the visual crowding effect on Chinese character recognition. Three independent variables were manipulated to include five visual fields (left periphery, left parafovea, fovea, right parafovea, and right periphery), three character complexities (low, medium and high complexities), and flanked condition. Accuracy rates and reaction times were employed to investigate the magnitude of visual crowding effect of character complexities and between-character crowding effect of target chatacter and embedded characters on Chinese character recognition. Next, Chinese characters naming task was also adopted to divide our subjects into two groups—group of high reading proficiency (HR) and group of low reading proficiency (LR) and linked with the flanker task.
The results showed that between-character crowding effect was getting stronger when the target character was far from the fovea. There was an interaction between character complexities and between-character crowding effect indicating that the effect of character complexities only showed up in the between-character crowding situation. In addition, LR group was influenced more by the effect of character complexities when the target character presented in the parafovea and LR group was influenced more by the between-character crowding effect when the target character presented in the periphery. According to these results, the visual crowding effect takes place in the peripheral vision and the influences of character complexities to readers depends on the magnitude of between-character crowding effect. Reading an article or sentences are common reading activities and the between-character crowding effect is the primary dominator in the process of character recognition. Second, reading proficiency reflected the abilities of discriminating neighboring characters and this ability changed as the location of target character changed. Thus, HR and LR suffered from different degrees of between-character crowding effect and the effect of character complexities when recognized characters in the parafovea and periphery. Above results indicated that the size of visual span in different reading proficiency is determined by between-character crowding effect and the effect of character complexities together in the level of visual perception.
關鍵字(中) ★ 中文字辨認
★ 視覺擁擠效應
★ 視覺廣度
★ 可辨識視窗
★ 閱讀效能
關鍵字(英) ★ Chinese character recognition
★ visual crowding effect
★ visual span
★ uncrowded window
★ reading proficiency
論文目次 中文摘要i
英文摘要iii
誌謝vi
第一章 前言1
第一節 研究背景1
第二節 研究問題6
第二章 文獻回顧9
第一節 視覺廣度與視覺擁擠效應9
第二節 視覺擁擠效應機制與物體辨認的典型階層模式12
第三節 物體特徵對視覺擁擠效應階層模式之挑戰14
第四節 視覺擁擠效應的個別差異17
第五節 中文字的視覺擁擠效應與視覺廣度21
第三章 研究方法23
第一節 研究對象23
第二節 旁側干擾作業實驗設計23
第三節 中文字唸名作業34
第四章 結果39
第一節 中文字唸名作業結果39
第二節 旁側干擾作業結果41
第五章 討論61
第一節 視野位置與視覺擁擠效應間的關係61
第二節 視覺擁擠效應與閱讀效能間的連結64
第六章 結論69
參考文獻70
附錄78
附錄一 旁側干擾作業與中文字唸名作業的文字材料78
附錄二 有旁側干擾字情境所呈現的刺激材料79
附錄三 旁側干擾作業統計分析摘要表80
參考文獻
Aleci, C., Cafasso, R., & Lorenzo, C. (2014). Improving crowding in dyslexic children by visual training: Conflicting results from a single-masked crossover pilot study. British Journal of Medicine & Medical Research, 4(20), 3720-3733.
Andriessen, J. J., & Bouma, H. (1976). Eccentric vision: adverse interactions between line segments. Vision Res, 16(1), 71-78.
Attkinson, J. (1991). Review of human visual development: Crowding and dyslexia Vision and Visual Dyslexia (pp. 44-57): MacMillan Press.
Banks, W. P., & White, H. (1984). Lateral interference and perceptual grouping in visual detection. Perception & Psychophysics, 36(3), 285-295.
Bondarenko, V. M., & Semenov, L. A. (2005). [Visual acuity and the crowding effect in 8- to 17-year-old schoolchildren]. Fiziol Cheloveka, 31(5), 44-51.
Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226(5241), 177-178.
Bouma, H., & Legein, C. P. (1977). Foveal and parafoveal recognition of letters and words by dyslexics and by average readers. Neuropsychologia, 15(1), 69-80.
Chanceaux, M., & Grainger, J. (2013). Constraints on Letter-in-String Identification in Peripheral Vision: Effects of Number of Flankers and Deployment of Attention. Frontiers in Psychology, 4, 1-10.
Cheung, Y. T., & Cheung, S. H. (2015). Similarity effects in crowding of Chinese characters. J Vis, 15(12), 98.
Cline, D., Hofstetter, H., & Griffin, J. (1997). Dictionary of Visual Science. Boston: Butterworth-Heinemann.
Dowdeswell, H. J., Slater, A. M., Broomhall, J., & Tripp, J. Visual deficits in children born at less than 32 weeks′ gestation with and without major ocular pathology and cerebral damage. British Journal of Ophthalmology, 79, 447-452.
Ehrt, O., & Hess, R. F. (2005). Foveal contour interaction: detection and discrimination. J Opt Soc Am A Opt Image Sci Vis, 22(2), 209-216.
Emadi, N., & Esteky, H. (2013). Neural representation of ambiguous visual objects in the inferior temporal cortex. PLoS One, 8(10), 1-14.
Ester, E. F., Klee, D., & Awh, E. (2014). Visual crowding cannot be wholly explained by feature pooling. Journal of Experimental Psychology: Human Perception & Performance, 40(3), 1022-1033.
Farzin, F., Rivera, S. M., & Whitney, D. (2009). Holistic crowding of Mooney faces. J Vis, 9(6), 18.11-15.
Flom, M. C., Heath, G. G., & Takahashi, E. (1963a). CONTOUR INTERACTION AND VISUAL RESOLUTION: CONTRALATERAL EFFECTS. Science, 142(3594), 979-980.
Flom, M. C., Weymouth, F. W., & Kahneman, D. (1963b). VISUAL RESOLUTION AND CONTOUR INTERACTION. J Opt Soc Am, 53, 1026-1032.
Geiger, G., & Lettvin, J. Y. (1987). Peripheral vision in persons with dyslexia. New England Journal of Medicine, 316(20), 1238-1243.
Gori, S., & Facoetti, A. (2014). Perceptual learning as a possible new approach for remediation and prevention of developmental dyslexia. 99, 78-87.
Gori, S., & Facoetti, A. (2015). How the visual aspects can be crucial in reading acquisition? The intriguing case of crowding and developmental dyslexia. J Vis, 15(1), 1-20.
Goswami, U., & Bryant, P. (1990). Phonological skills and learning to read. Hillsdale: Erlbaum.
Greenwood, J. A., Bex, P. J., & Dakin, S. C. (2010). Crowding changes appearance. Curr Biol, 20(6), 496-501.
Guo, S. L. (2009). Dynamic counting and contrast between the stroke numbers of Simplified and Traditional Chinese characters. Journal of Beihua University (Social Sciences), 10(2), 50-56.
He, Y., Legge, G. E., & Yu, D. (2013). Sensory and cognitive influences on the training-related improvement of reading speed in peripheral vision. J Vis, 13(7), 1-14.
Henderson, J. M. (2012). Visual Attention and Eye Movement Control. In K. Rayner (Ed.), Eye Movements and Visual Cognition (pp. 261-263). New York: Springer-Verlag.
Herzog, M. H., Bilge, S., Chicherov, V., & Manassi, M. (2015). Crowding, grouping, and object recognition: A matter of appearance. J Vis, 15(6), 1-18.
Hoover, W. A., & Gough, P. B. (1990). The simple view of reading. Reading and Writing, 2(2), 127-160.
Inhoff, A. W., & Liu, W. (1998). The perceptual span and oculomotor activity during the reading of Chinese sentences. J Exp Psychol Hum Percept Perform, 24(1), 20-34.
Jackson, M. D., & McClelland, J. L. (1975). Sensory and cognitive determinants of reading speed. Journal of Verbal Learning and Verbal Behavior, 14(6), 565-574.
Jackson, M. D., & McClelland, L. (1979). Processing determinants of reading speed. J Exp Psychol Gen, 108(2), 151-181.
Jeon, S. T., Hamid, J., Maurer, D., & Lewis, T. L. (2010). Developmental changes during childhood in single-letter acuity and its crowding by surrounding contours. J Exp Child Psychol, 107(4), 423-437.
Kliner, M. (2010). Visual stimulus timing precision in Psychtoolbox-3: Tests, pitfalls and solutions. Perception, 39, 189.
Kooi, F. L., Toet, A., Tripathy, S. P., & Levi, D. M. (1994). The effect of similarity and duration on spatial interaction in peripheral vision. Spat Vis, 8(2), 255-279.
Kwon, M., Legge, G. E., & Dubbels, B. R. (2007). Developmental changes in the visual span for reading. Vision Res, 47(22), 2889-2900.
Lee, H. W., Kwon, M., Legge, G. E., & Gefroh, J. J. (2010). Training improves reading speed in peripheral vision: is it due to attention? J Vis, 10(6), 18.
Legge, G. E., Cheung, S. H., Yu, D., Chung, S. T., Lee, H. W., & Owens, D. P. (2007). The case for the visual span as a sensory bottleneck in reading. J Vis, 7(2), 9.1-15.
Legge, G. E., Mansfield, J. S., & Chung, S. T. (2001). Psychophysics of reading. XX. Linking letter recognition to reading speed in central and peripheral vision. Vision Res, 41(6), 725-743.
Levi, D. M. (2008). Crowding--an essential bottleneck for object recognition: a mini-review. Vision Res, 48(5), 635-654.
Levi, D. M., Klein, S. A., & Aitsebaomo, A. P. (1985). Vernier acuity, crowding and cortical magnification. Vision Res, 25(7), 963-977.
Loomis, J. M. (1978). Lateral masking in foveal and eccentric vision. Vision Res, 18, 335-338.
Louie, E. G., Bressler, D. W., & Whitney, D. (2007). Holistic crowding: selective interference between configural representations of faces in crowded scenes. J Vis, 7(2), 24.21-11.
Manassi, M., Sayim, B., & Herzog, M. H. (2012). Grouping, pooling, and when bigger is better in visual crowding. J Vis, 12(10), 1-14.
Manassi, M., Sayim, B., & Herzog, M. H. (2013). When crowding of crowding leads to uncrowding. J Vis, 13(13), 1-10.
Martelli, M., Di Filippo, G., Spinelli, D., & Zoccolotti, P. (2009). Crowding, reading, and developmental dyslexia. J Vis, 9(4), 1-18.
Martelli, M., Majaj, N. J., & Pelli, D. G. (2005). Are faces processed like words? A diagnostic test for recognition by parts. J Vis, 5(1), 58-70.
McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review, 88(5), 375–407.
McConkie, G. W., & Rayner, K. (1975). The span of the effective stimulus during a fixation in reading. Percept Psychophys, 17.
Moll, K., & Jones, M. (2013). Naming fluency in dyslexic and nondyslexic readers: differential effects of visual crowding in foveal, parafoveal, and peripheral vision. Q J Exp Psychol (Hove), 66(11), 2085-2091.
Montani, V., Facoetti, A., & Zorzi, M. (2015). The effect of decreased interletter spacing on orthographic processing. Psychon Bull Rev, 22(3), 824-832. doi:10.3758/s13423-014-0728-9
Moores, E., Cassim, R., & Talcott, J. B. (2011). Adults with dyslexia exhibit large effects of crowding, increased dependence on cues, and detrimental effects of distractors in visual search tasks. Neuropsychologia, 49(14), 3881-3890.
Muter, V., Hulme, C., Snowling, M., & Taylor, S. (1998). Segmentation, Not Rhyming, Predicts Early Progress in Learning to Read. J Exp Child Psychol, 71(1), 3-27.
Nazir, T. A. (1992). Effects of lateral masking and spatial precueing on gap-resolution in central and peripheral vision. Vision Res, 32(4), 771-777.
Parkes, L., Lund, J., Angelucci, A., Solomon, J. A., & Morgan, M. (2001). Compulsory averaging of crowded orientation signals in human vision. Nat Neurosci, 4(7), 739-744.
Pelli, D. G. (2008). Crowding: a cortical constraint on object recognition. Curr Opin Neurobiol, 18(4), 445-451.
Pelli, D. G., Farell, B., & Moore, D. C. (2003). The remarkable inefficiency of word recognition. Nature, 423(6941), 752-756.
Pelli, D. G., Palomares, M., & Majaj, N. J. (2004). Crowding is unlike ordinary masking: distinguishing feature integration from detection. J Vis, 4(12), 1136-1169.
Pelli, D. G., & Tillman, K. A. (2008). The uncrowded window of object recognition. Nat Neurosci, 11(10), 1129-1135.
Pelli, D. G., Tillman, K. A., Freeman, J., Su, M., Berger, T. D., & Majaj, N. J. (2007). Crowding and eccentricity determine reading rate. J Vis, 7(2), 20.21-36.
Perea, M., & Gomez, P. (2012a). Increasing interletter spacing facilitates encoding of words. Psychon Bull Rev, 19(2), 332-338.
Perea, M., & Gomez, P. (2012b). Subtle increases in interletter spacing facilitate the encoding of words during normal reading. PLoS One, 7(10), e47568.
Perea, M., Moret-Tatay, C., & Gomez, P. (2011). The effects of interletter spacing in visual-word recognition. Acta Psychol (Amst), 137(3), 345-351.
Perea, M., Panadero, V., Moret-Tatay, C., & Gómez, P. (2012). The effects of inter-letter spacing in visual-word recognition: Evidence with young normal readers and developmental dyslexics. Learning and Instruction, 22(6), 420-430.
Pernet, C., Valdois, S., Celsis, P., & Demonet, J. F. (2006). Lateral masking, levels of processing and stimulus category: a comparative study between normal and dyslexic readers. Neuropsychologia, 44(12), 2374-2385.
Perry, C., Ziegler, J. C., & Zorzi, M. (2007). Nested incremental modeling in the development of computational theories: the CDP+ model of reading aloud. Psychological Review, 114(2), 273-315.
Rayner, K., Well, A. D., Pollatsek, A., & Bertera, J. H. (1982). The availability of useful information to the right of fixation in reading. Percept Psychophys, 31(6), 537-550.
Reuther, J., & Chakravarthi, R. (2014). Categorical membership modulates crowding: evidence from characters. J Vis, 14(6).
Roe, A. W., Chelazzi, L., Connor, C. E., Connor, C. E., Conway, B. R., Fujita, I., . . . Vanduffel, W. (2012). Toward a unified theory of visual area V4. Neuron, 74(1), 12-29.
Sayim, B., Greenwood, J. A., & Cavanagh, P. (2014). Foveal target repetitions reduce crowding. J Vis, 14(6), 1-12.
Schilling, H. H., Rayner, K., & Chumbley, J. I. (1998). Comparing naming, lexical decision, and eye fixation times: word frequency effects and individual differences. Mem Cognit, 26(6), 1270-1281.
Schneps, M. H., Thomson, J. M., Chen, C., Sonnert, G., & Pomplun, M. (2013). E-readers are more effective than paper for some with dyslexia. PLoS One, 8(9), e75634.
Schneps, M. H., Thomson, J. M., Sonnert, G., Pomplun, M., Chen, C., & Heffner-Wong, A. (2013). Shorter lines facilitate reading in those who struggle. PLoS One, 8(8), e71161.
Scolari, M., Kohnen, A., Barton, B., & Awh, E. (2007). Spatial attention, preview, and popout: which factors influence critical spacing in crowded displays? J Vis, 7(2), 1-23.
Semenov, L., Chernova, N., & Bondarko, V. (2000). Measurement of visual acuity and crowding effect in 3-9-year-old children. Human Physiology, 26, 16-20.
Simons, K. (1983). Visual acuity norms in young children. Surv Ophthalmol, 28(2), 84-92.
Sperling, A. J., Lu, Z. L., Manis, F. R., & Seidenberg, M. S. (2005). Deficits in perceptual noise exclusion in developmental dyslexia. Nat Neurosci, 8(7), 862-863.
Spinelli, D., De Luca, M., Judica, A., & Zoccolotti, P. (2002). Crowding effects on word identification in developmental dyslexia. Cortex, 38(2), 179-200.
Stanovich, K. E. (2000). Progress in understanding reading. New York: The Guilford Press.
Strasburger, H. (2005). Unfocused spatial attention underlies the crowding effect in indirect form vision. J Vis, 5, 1024-1037.
Strasburger, H., Harvey, L. O., Jr., & Rentschler, I. (1991). Contrast thresholds for identification of numeric characters in direct and eccentric view. Percept Psychophys, 49(6), 495-508.
Stuart, J. A., & Burian, H. M. (1962). A study of separation difficulty. Its relationship to visual acuity in normal and amblyopic eyes. Am J Ophthalmol, 53, 471-477.
Toet, A., & Levi, D. M. (1992). The two-dimensional shape of spatial interaction zones in the parafovea. Vision Res, 32(7), 1349-1357.
Tootell, R. B., Hadjikhani N. K. Vanduffel, W., Liu, A. K., Mendola, J. D., Sereno, M. I., & Dale, A. M. (1998). Functional analysis of primary visual cortex (V1) in humans. Proc Natl Acad Sci U S A, 95, 811-817.
Underwood, N. R., & McConkie, G. W. (1985). Perceptual Span for Letter Distinctions during Reading. Reading Research Quarterly, 20(2), 153-162.
Veldre, A., & Andrews, S. (2014). Lexical quality and eye movements: individual differences in the perceptual span of skilled adult readers. Q J Exp Psychol (Hove), 67(4), 703-727.
Vickery, T. J., Shim, W. M., Chakravarthi, R., Jiang, Y. V., & Luedeman, R. (2009). Supercrowding: weakly masking a target expands the range of crowding. J Vis, 9(2), 1-15.
Wang, H., He, X., & Legge, G. E. (2014). Effect of pattern complexity on the visual span for Chinese and alphabet characters. J Vis, 14(8), 1-17.
Westheimer, G., & Hauske, G. (1975). Temporal and spatial interference with vernier acuity. Vision Res, 15, 1137-1141.
Westheimer, G., Shimamura, K., & McKee, S. P. (1976). Interference with line-orientation sensitivity. J Opt Soc Am, 66(4), 332-338.
Whitney, D., & Levi, D. M. (2011). Visual crowding: a fundamental limit on conscious perception and object recognition. Trends Cogn Sci, 15(4), 160-168.
Wolford, G., & Chambers, L. (1983). Lateral masking as a function of spacing. Percept Psychophys, 33(2), 129-138.
Yeh, S. L., Li, J. L., & Chen, I. P. (1997). The perceptual dimensions underlying the classification of the shapes of Chinese characters. Chinese Journal of Psychology, 39, 47-74.
Yeshurun, Y., & Rashal, E. (2010). Precueing attention to the target location diminishes crowding and reduces the critical distance. J Vis, 10(10), 1-12.
Yu, D., Cheung, S. H., Legge, G. E., & Chung, S. T. (2007). Effect of letter spacing on visual span and reading speed. J Vis, 7(2), 2.1-10.
Zhang, J. Y., Zhang, T., Xue, F., Liu, L., & Yu, C. (2009). Legibility of Chinese characters in peripheral vision and the top-down influences on crowding. Vision Res, 49(1), 44-53.
Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: a psycholinguistic grain size theory. Psychol Bull, 131(1), 3-29.
Zorzi, M., Barbiero, C., Facoetti, A., Lonciari, I., Carrozzi, M., Montico, M., . . . Ziegler, J. C. (2012). Extra-large letter spacing improves reading in dyslexia. Proc Natl Acad Sci U S A, 109(28), 11455-11459.
指導教授 蔡介立、李佳穎(Jie-Li Tsai Chia-Ying Lee) 審核日期 2017-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明