博碩士論文 103825006 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:
姓名 余安雅(An-Ya Yu)  查詢紙本館藏   畢業系所 認知與神經科學研究所
(Correlation of statistical learning of different implicit transitional probabilities with Chinese literacy acquisition in non-native adult learners)
★ The influence of experience on the SNARC effect -the mapping between sequential information and spatial representation★ 中文名詞動詞的具體效果的神經相關活動
★ 字形和語意對短期記憶的影響: 從行為及腦造影實驗而來的證據★ 中文字音與字形相似度對語言短期記憶之影響
★ 非語音訊息對中英雙語使用者的語言短期記憶的貢獻★ 中文短期記憶之字形表徵研究
★ The temporal dynamics of the code-switching between alphabetic and logographic languages in unbalancedChinese-English bilinguals★ The acquisition of Chinese literacy as a second language correlates with statistical learning of implicit transitional probability
★ 以行為及腦造影證據探討英文字音及字形相似效果對中英雙語使用者之短期記憶的影響★  The behavioral and neural correlates of orthographic lexicon and orthographic buffer in Chinese writing
★ How the Brain Deals with the Asymmetry between Chinese Subject and Object Relative Clauses: Support for a Dynamic Processing Theory★ EXPLORATION OF THE NEURAL CORRELATES OF SYNTACTIC PROCESSING IN CHINESE USING FUNCTIONAL MAGNETIC RESONANCE IMAGING AND EVENT-RELATED POTENTIALS
★ 視知覺相關能力以及統計學習能力對中文識字學習的影響:來自以中文為母語或外語學習者的證據★ 字形相似性、字義相似性以及視覺相似性對於中文工作記憶的影響
★ The Characteristics and Neurophysiological Correlates of Componential Visual Statistical Learning★ 金錢酬賞之來源與其分配對公平性感知的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-8-28以後開放)
摘要(中) 近來研究顯示,統計性學習與拼音文字(如希伯來文),及非拼音文字(如中文)的學習發展有關。然而不同形式的統計性學習,例如對視覺空間、視覺順序排列以及聽覺順序等刺激材料中不同特性敏感的統計學習能力之間的比較仍欠缺,此外,這些不同面向的統計學習能力對於語言習得是否有相同的貢獻仍有待進一步釐清。
此外,本研究欲進一步探討以非中文為母語的外籍受試者處理中文形音對應關係時的表現,以及大腦活化機制。因此,本研究招募了12位以中文為母語的本籍受試者及12位以拼音文字為母語的外籍中文學習受試者參與實驗三的核磁共振造影的研究。同時,本實驗也測量了受試者的順序性視覺統計學習能力、空間性統計學習能力中的特徵組合統計學習、隱性特徵組合統計學習、智商以及語音短期記憶。 結果發現相較於本籍受試者,外籍受試者進行形音轉換時,中文識字量與左腦梭狀回(fusiform gyrus)的活化程度有顯著相關,同時他們的視覺空間特徵組合統計學習能力與中文音旁一致性敏感度有顯著相關,此效果顯示於左腦中的梭狀回(fusiform gyrus)以及前額葉內側中回 (medial frontal gyrus)的活化。
我們的研究結果確認了統計性學習確實是一個預測以中文為第二語言之文字習得的因子,同時顯示: (1)語言習得的不同面向可能與不同向度的統計學習有關,(2)除了序列性統計學習能力之外,視覺空間性統計學習能力也許是學習中文為第二語之初學者習得中文字辨識的重要預測因子。
摘要(英) Recent research has shown that statistical learning (SL) ability has consistently correlated with literacy acquisition of alphabetic (e.g., Hebrew) and non-alphabetic (e.g., Chinese) languages alike. However, various forms of SL, such as spatial visual SL (SpaVSL), sequential visual SL (SeqVSL), and sequential auditory SL (ASL), have seldom been compared side-by-side, and whether these aspects contribute to literacy acquisition equally remains to be clarified.
To explore these issues, 197 alphabetic language speakers learning Chinese as a second language were recruited in our Experiment 1, with 85 among these participants were recruited in Experiment 2. Participants’ various SL abilities, as well as their intelligence quotient (IQ), verbal short-term memory (vSTM), and Chinese literacy proficiency were measured. As the majority of modern Chinese characters are phonograms, which are typically composed of a semantic and a phonetic radical on the left and right side of a character, respectively, we hypothesized that SpaVSL, particularly the sensitivity to combinatorial regularities (CVSL), would exhibit a stronger correlation with the Chinese literacy indices than SeqVSL. Our Experiment 1 results confirmed the relationship between SeqVSL and Chinese literacy measurements previously found, but showed no correlation between CVSL or ASL with Chinese literacy measurements. In Experiment 2, in addition to showing that participants who continued to learn Chinese in the past few months improved more than those who stopped to take formal lessons of Chinese, we confirmed results from Experiment 1 and previous findings for SeqVSL in predicting Chinese literacy improvement for the latter group. However, the effects of CVSL remained insignificant. A predictive effect of ASL in the participants who stopped to take formal Chinese lessons was found, contrary to previous findings. Overall, SeqVSL was a stronger predictor than CVSL in our cross-sectional and longitudinal investigations.
In Experiment 3, we recruited 12 native Chinese readers and 12 non-native Chinese readers to participate in a homophone judgment task in fMRI to investigate their sensitivity to consistency of Chinese pseudo phonograms. We also measured their SeqVSL, SpaVSL, and CVSL in addition to their IQ and vSTM. The process through which participants made homophone judgments on the pseudo phonograms is orthography-phonology conversion (OPC) in Chinese characters Due to the varying consistency information of Chinese phonetic radicals, we inferred that this process is very similar in nature to implicit learning, which can be measured via SL. Results revealed that in non-native participants, their character size was correlated with the activations at the left fusiform gyrus. For the consistency-sensitivity related effect, a significant correlation was found between SpaVSL with the left fusiform gyrus and the left medial frontal gyrus.
Our findings confirm that SL is indeed a valid predictor of second language acquisition of Chinese character recognition, and suggest that 1) different SL may be differentially correlated to various aspects of language acquisition, and 2) in addition to SeqVSL, SpaVSL may be a crucial predictor of processing efficiency of Chinese character consistency in non-native beginning learners of Chinese.
關鍵字(中) ★ 統計性學習
★ 中文第二語言學習
★ 雙語
★ 形音轉換
★ 中文音旁一致性
關鍵字(英) ★ statistical learning
★ visual transitional probabilities
★ second language acquisition
★ bilingualism
★ orthography-phonology conversion
★ Chinese radical consistency
論文目次 Table of Contents
Chinese Abstract v
English Abstract vii
Acknowledgment ix
Table of Content xi
List of Figures xv
List of Tables xvi
Chapter 1 Introduction 1
1.1 Statistical learning 1
1.1.1 Different types of SL: generality and specificity 1
1.1.2 SL and basic cognitive abilities 2
1.2 SL and language 3
1.2.1 SL and first language (L1) acquisition 4
1.2.2 SL and second language (L2) acquisition 6
1.3 Characteristics of Chinese 9
1.3.1 Orthographic depth and Chinese consistency 9
1.3.2 Visual spatial complexity 13
1.4 Summary of current literature and its gaps 14
1.5 Aims of the current study 15
Chapter 2 Tasks 17
2.1 Chinese proficiency tasks 17
2.1.1 Chinese character size tset (CS) 18
2.1.2 Picture-matching test (PM) 18
2.1.3 Visual lexical decision test (VLDT) 19
2.1.4 Auditory lexical decision test (ALDT) 19
2.1.5 Visual pseudo character test (VPCT) 20
2.1.6 Auditory pseudo character test (APCT) 20
2.2 Basic cognitive tasks 21
2.2.1 WAIS block design 21
2.2.2 Forward digit span 22
2.3 Statistical learning tasks 22
2.3.1 Sequential visual statistical learning (SeqVSL) 22
2.3.2 Auditory statistical learning (ASL) 23
2.3.3 Spatial combination visual statistical learning (CVSL) 24
2.3.4 Spatial grid visual statistical learning (SpaVSL) 26
2.4 fMRI tasks 26
2.4.1 Homophone judgment (HJ) 26
2.4.2 Color judgment: pseudo Chinese character (CJ_PC) 28
2.4.3 Color judgment: Korean character (CJ_K) 29
2.5 List of tasks used in each experiment 30
Chapter 3 Experiment 1 31
3.1 Methods 31
3.1.1 Participants 31
3.1.2 Design and stimuli 32
3.1.3 Apparatus 32
3.1.4 Procedure 34
3.2 Results 35
3.2.1 Descriptive statistics of study variables 35
3.2.2 Correlation analysis of independent and dependent variables 37
3.2.3 Regression analysis of dependent variables 42
3.3 Discussion 46
Chapter 4 Experiment 2 49
4.1 Methods 49
4.1.1 Participants 49
4.1.2 Design and stimuli 49
4.1.3 Procedure 49
4.2 Results 50
4.2.1 Descriptive statistics of study variables 50
4.2.2 Correlation analysis of independent variables and improvement of Chinese proficiency 53
4.2.3 Regression analysis of improvement of Chinese proficiency 58
4.3 Discussion 61
Chapter 5 Experiment 3 63
5.1 Methods 64
5.1.1 Participants 64
5.1.2 Design and stimuli 65
5.1.3 Apparatus 67
5.1.4 Procedure 67
5.2 Image acquisition 68
5.3 Data processing 68
5.3.1 Image data processing 68
5.3.2 1st level GLM modeling and 2nd level contrasts 69
5.3.3 Region of interest analysis 69
5.4 Results 70
5.4.1 Descriptive statistics for SL variables and other characteristics 70
5.4.2 The performance of homophone and color judgments across participants 71
5.4.3 Imaging results 73
5.5 Discussion 88
Chapter 6 General Discussion 92
6.1 Summary of study results 92
6.2 SL specificity and CVSL 92
6.3 SL and Chinese OPC processing 94
6.4 Study limitations and future suggestions 95
6.5 Conclusion 95
References 97
Appendix 103
參考文獻 Arciuli, J., & Simpson, I. C. (2012). Statistical learning is related to reading ability in children and adults. Cogn Sci, 36(2), 286-304. doi:10.1111/j.1551-6709.2011.01200.x
Aslin, R. N., & Newport, E. L. (2012). Statistical learning: From acquiring specific items to forming general rules. Curr Dir Psychol Sci, 21(3), 170-176. doi:10.1177/0963721412436806
Booth, J. R., Lu, D., Burman, D. D., Chou, T.-L., Jin, Z., Peng, D.-L., . . . Liu, L. (2006). Specialization of phonological and semantic processing in Chinese word reading. Brain Research, 1071(1), 197-207. doi:http://dx.doi.org/10.1016/j.brainres.2005.11.097
Bowers, P. N., Kirby, J. R., & Deacon, S. H. (2010). The Effects of Morphological Instruction on Literacy Skills: A Systematic Review of the Literature. Review of Educational Research, 80(2), 144-179. doi:10.3102/0034654309359353
Conway, C. M., & Christiansen, M. H. (2006). Statistical learning within and between modalities: pitting abstract against stimulus-specific representations. Psychol Sci, 17(10), 905-912. doi:10.1111/j.1467-9280.2006.01801.x
Dehaene, S., Le Clec′H, G., Poline, J., Le Bihan, D., & Cohen, L. (2002). The visual word form area: a prelexical representation of visual words in the fusiform gyrus. Neuroreport, 13(3), 321-325.
Evans, J. L., Saffran, J. R., & Robe-Torres, K. (2009). Statistical learning in children with specific language impairment. J Speech Lang Hear Res, 52(2), 321-335. doi:10.1044/1092-4388(2009/07-0189)
Fiser, J., & Aslin, R. N. (2001). Unsupervised statisical learning of higher-order spatial structures from visual scenes. Psychological Science, 12(6), 499-504.
Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Domain generality versus modality specificity: the paradox of statistical learning. Trends Cogn Sci, 19(3), 117-125. doi:10.1016/j.tics.2014.12.010
Frost, R., Siegelman, N., Narkiss, A., & Afek, L. (2013). What predicts successful literacy acquisition in a second language? Psychol Sci, 24(7), 1243-1252. doi:10.1177/0956797612472207
Gollan, T. H., Weissberger, G. H., Runnqvist, E., Montoya, R. I., & Cera, C. M. (2012). Self-ratings of Spoken Language Dominance: A Multi-Lingual Naming Test (MINT) and Preliminary Norms for Young and Aging Spanish-English Bilinguals. Bilingualism (Cambridge, England), 15(3), 594-615. doi:10.1017/S1366728911000332
Hall, M. G., Mattingley, J. B., & Dux, P. E. (2015). Distinct contributions of attention and working memory to visual statistical learning and ensemble processing. J Exp Psychol Hum Percept Perform, 41(4), 1112-1123. doi:10.1037/xhp0000069
Hsuan, U. E. (2015). 視知覺相關能力以及統計學習能力對中文識字學習的影響:來自以中文為母語或外語學習者的證據. (Master′s thesis), National Central University, Taiwan.
Huang, H. S. (2001). 中文年級認字量表. 台北: 心理.
Jackson, C. E., Lu, W. H., & Ju, D. ( 2013). Reading Chinese and reading English: similarities, differences, and second-language reading. In V. W. Berninger (Ed.), The Varieties of Orthographic Knowledge: I: Theoretical and Developmental Issues (pp. 73-110). Dordrecht: Springer Science & Business Media.
Kuo, W. J., Yeh, T. C., Lee, J. R., Chen, L. F., Lee, P. L., Chen, S. S., . . . Hsieh, J. C. (2004). Orthographic and phonological processing of Chinese characters: an fMRI study. Neuroimage, 21(4), 1721-1731. doi:10.1016/j.neuroimage.2003.12.007
Lee, C.-Y., Huang, H.-W., Kuo, W.-J., Tsai, J.-L., & Tzeng, J. L. O. (2010). Cognitive and neural basis of the consistency and lexicality effects in reading Chinese. Journal of Neurolinguistics, 23(1), 10-27. doi:10.1016/j.jneuroling.2009.07.003
Lee, C.-Y., Tsai, J.-L., Chan, W.-H., Hsu, C.-H., Hung, D. L., & Tzeng, O. J. (2007). Temporal dynamics of the consistency effect in reading Chinese: an event-related potentials study. Neuroreport, 18(2), 147-151.
Lee, C. Y., Tsai, J. L., Kuo, W. J., Yeh, T. C., Wu, Y. T., Ho, L. T., . . . Hsieh, J. C. (2004). Neuronal correlates of consistency and frequency effects on Chinese character naming: an event-related fMRI study. Neuroimage, 23(4), 1235-1245. doi:10.1016/j.neuroimage.2004.07.064
Lee, C. Y., Tsai, J. L., Su, E. C., Tzeng, O. J. L., & Hung, D. L. (2005). Consistency, Regularity, and Frequency Effects in Naming Chinese Characters. Language and Linguistics, 6(1), 75-107.
Lien, Y. W. (1985). Consistency of the phonetic clues in the Chinese phonograms and their naming latencies. Unpublished Master′s thesis. National Taiwan University, Taipei.
Lu, W. H. (1992). Children’s Developing Metalinguistic Awareness of Properties of Chinese Characters . Master Thesis. University of Iowa, U.S.A.
McBride-Chang, C., Zhou, Y., Cho, J. R., Aram, D., Levin, I., & Tolchinsky, L. (2011). Visual spatial skill: a consequence of learning to read? J Exp Child Psychol, 109(2), 256-262. doi:10.1016/j.jecp.2010.12.003
McGeorge, P., Crawford, J. R., & Kelly, S. W. (1997). The relationships between psychometric intelligence and learning in an explicit and an implicit task. J Exp Psychol Learn Mem Cogn, 23(1), 239-245.
Misyak, J. B., Christiansen, M. H., & Bruce Tomblin, J. (2010). Sequential expectations: the role of prediction-based learning in language. Top Cogn Sci, 2(1), 138-153. doi:10.1111/j.1756-8765.2009.01072.x
Misyak, J. B., Christiansen, M. H., & Tomblin, J. B. (2010). On-line individual differences in statistical learning predict language processing. Front Psychol, 1, 31. doi:10.3389/fpsyg.2010.00031
Newport, E. L., & Aslin, R. N. (2004). Learning at a distance I. Statistical learning of non-adjacent dependencies. Cogn Psychol, 48(2), 127-162.
Packard, J. L. (2000). The morphology of Chinese: A linguistic and cognitive approach: Cambridge University Press.
Pelucchi, B., Hay, J. F., & Saffran, J. R. (2009). Statistical learning in a natural language by 8-month-old infants. Child Dev, 80(3), 674-685. doi:10.1111/j.1467-8624.2009.01290.x
Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: one phenomenon, two approaches. Trends Cogn Sci, 10(5), 233-238. doi:10.1016/j.tics.2006.03.006
Pinker, S. (1994). The language instinct (1st ed.). New York: W. Morrow and Co.
Reber, A. S., Walkenfeld, F. F., & Hernstadt, R. (1991). Implicit and explicit learning: individual differences and IQ. J Exp Psychol Learn Mem Cogn, 17(5), 888-896.
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926-1928.
Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70(1), 27-52.
Shih, E. (2013). The acquisition of Chinese literacy as a second langauge correlates with statistical learning of implicit transitional probability. (Master′s thesis), National Central University, Taiwan.
Siegelman, N., & Frost, R. (2015). Statistical learning as an individual ability: Theoretical perspectives and empirical evidence. Journal of Memory and Language, 81, 105-120. doi:http://dx.doi.org/10.1016/j.jml.2015.02.001
Tsai, J.-L., Chiu, Y.-C., Tzeng, O. J., & Hung, D. L. (2006). The early extraction of sublexical phonology in reading Chinese pseudocharacters: an event-related potentials study. Language and Linguistics, 7(3), 619-635.
Tsai, J. L., Lee, C. Y., Lin, Y. C., Tzeng, O. J., & Hung, D. L. (2006). Neighborhood Size Effects of Chinese Words in Lexical Decision and Reading. Language and Linguistics, 7(3), 659-675.
Turk-Browne, N. B., Junge, J., & Scholl, B. J. (2005). The automaticity of visual statistical learning. J Exp Psychol Gen, 134(4), 552-564. doi:10.1037/0096-3445.134.4.552
Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural evidence of statistical learning: efficient detection of visual regularities without awareness. J Cogn Neurosci, 21(10), 1934-1945. doi:10.1162/jocn.2009.21131
Tzeng, Y. L., & Lee, C. Y. (2012). The Developmental Trajectories of Orthography-to-Phonology Mapping Consistency in Learning to Read Chinese. Contemporary Educational Research Quarterly, 20(4), 45-84.
Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Trans Neural Netw, 10(5), 988-999. doi:10.1109/72.788640
Wang, Hung, Chang, & Chen. (2008). Number of Characters School Students Know from G1 to G9. Bulletin of Education Psychology, 39(4), 555-568.
Wang, T., & Saffran, J. R. (2014). Statistical learning of a tonal language: the influence of bilingualism and previous linguistic experience. Front Psychol, 5, 953. doi:10.3389/fpsyg.2014.00953
Zhou, Y. (1978). To what degree are the “phonetics” of present-day Chinese characters still phonetic. Zhongguo yuwen, 146, 172-177.
指導教授 吳嫻(Denise H. Wu) 審核日期 2016-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明