博碩士論文 103826601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.238.248.200
姓名 邱夢築(Hagiwara, Yuki)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 由基因微陣列分析發炎與腎臟細胞癌發生之機制
(Study of the association between inflammation and the initiation of renal cell carcinoma: microarray-based gene profiling analysis)
相關論文
★ VHL基因突變在癌前期的組織發炎機制★ VHL剔除模型之轉錄體差異以及台灣透明細胞腎細胞癌族群之特定基因體變異之研究
★ VHL knockdown HK-2 cells induce macrophage endothelial extravasation★ ITPR2, an ER calcium channel, regulates ER stress and inflammatory response in pre-cancerous kidney tubule cells
★ 透明腎臟細胞癌發生前期與組織發炎之關係研究★ VHL與KIM-1的功能關係研究
★ 應用大腸桿菌與酵母菌蛋白質體晶片系統性分析抗菌肽及抗生素作用之目標蛋白質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
ccRCC (clear-cell renal cell carcinoma)是在全世界最常見的腎臟癌。70%以上的病人在VHL腫瘤抑制基因有突變。VHL的突變通常增加HIF(Hypoxia induced factor)的活性導致代謝跟微環境的改變。為了研究ccRCC形成的過程和病因,我們把老鼠腎小管的VHL基因剔除,結果缺VHL機能的腎臟出現發炎以及纖維化的症狀。其他研究也發現慢性腎臟病(一種慢性發炎疾病)病人得腎臟癌比例比健康人高很多。這件事情就表示發炎有可能是腎臟癌發生的前導。這個研究的目的是從病理及基因體的變化來分析發炎和癌症的相關。在缺VHL機能的腎臟除了Myc之類的細胞轉型因素以外還有調控Macrophage功能等等導致免疫反應的基因過度表現。我們接著用資料庫(GSE66494和GSE36895)下載的慢性腎臟病檢體,腎臟癌第一期及第三期的腫瘤樣本(以上腎臟癌的樣本均缺VHL gene功能)與缺VHL功能的老鼠比對。因為在所有病變組織(發炎的腎臟和癌化的腎臟)中表現下降的基因是跟代謝的過程有關,所以我們能夠確認缺VHL的功能以及發炎會導致不正常的代謝過程。我們還有假設只有在發炎階段到初期的癌症之間表現很高的基因有可能是癌症發生的關鍵, 且在所有病變組織表現很高的基因,與只有在發炎階段及後期的癌症表現高的基因,可能是與轉移有關。比方說只有在發炎階段到初期癌症上升的基因包括跟發育過程有關的基因,這表示形成癌症的反分化(dedifferentiation)過程有可能在發炎階段已開始。除了只有在發炎階段到初期癌症之間上升的基因之外發炎階段和後期癌症上升的基因以及所有病變組織表現很高的基因也包括免疫反應有關的基因,這件事情表示發炎不只導致癌症的產生。再加上在第一期與第三期腫瘤中,與DNA損傷有關的基因的表現有增加,這結果表示癌症發生初期時就有嚴重的DNA損傷。為了驗證DNA的損傷我們做了IHC,然後發現人體的RCC樣本和VHL基因剔除的老鼠都有Gamma-H2AX (它是表示DNA 鏈斷裂的標靶),但是它的表現量在RCC的樣本較明顯。IHC的結果表示DNA的損傷在發炎的階段已開始累積,且支持我們的發炎導致腎臟癌的假設。
摘要(英) Abstract
Clear-cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma in the world. Over 70% of ccRCC patients have mutations in the von Hippel–Lindau (VHL) tumor suppress gene. Mutations in VHL activate hypoxia-inducible factor 1-alpha (HIF1A) and result in alteration of microenvironment and metabolic pathways. We have generated conditional VHL knockout mouse model to study the etiology of ccRCC progression. In this mouse model, we observed that inactivation of VHL in the kidney tubules resulted in tissue inflammation and fibrosis. Further, it was reported that patients of chronic kidney disease (CKD), a chronic inflammatory disorder, were more likely to develop this cancer compared to the general population. These observations suggest a role of inflammation in kidney cancer development. The goal of this study is to dissect the correlation between inflammation and kidney cancer development. By analyzing expression profiles of mouse VHL mutant kidneys relative to wild-type kidneys, we found a cluster of genes involved in immune response were over-represented. These over-represented immune response genes include regulators of macrophage functions, in addition to those involved in cellular transformation such as Myc. We then compared this gene expression profile to those of the chronic kidney disease (CKD) kidney (GSE66494), and stage 1 and stage 3 ccRCC, obtained from the public domain database (GSE36895;only those containing VHL mutations were selected). Many genes significantly down-regulated in inflammatory kidney (VHL knockout mouse and CKD patients) and in early stage and/or late stage ccRCC are associated with metabolic processes, confirming that metabolic abnormality is the feature of VHL mutation and inflammatory kidney. We hypothesized that genes activated in inflammation kidneys and early-stage cancer may play important roles in the initiation of inflammation-induced cancer. For example, we found genes involved in the developmental process were over-represented in both inflammatory tissues and in early-stage cancer. This may suggest that dedifferentiation process central to cancer formation may occur in precancerous inflammation. Further, genes that were activated only in inflammation kidneys and late-stage cancers and genes consistently up-regulated in all diseased kidneys included many immune response genes, suggesting that inflammation may be not only precursor of cancer formation but also may play important roles in cancer progression. Moreover, chemokines that are involved in immune cell recruit may also be involved in the induction of metastasis. Genes that were significantly up-regulated both in stage1 and stage3 cancers but not in VHL knockout mouse or CKD kidneys include DNA damage response associated genes. This result suggests that DNA damages occur at the onset of cancer. The result of immunohistochemistry (IHC) suggested that accumulation of DNA damages occurred in pre-cancerous inflammation tissues. Based on these results, we proposed the genetic model for ccRCC initiation and progression.
關鍵字(中) ★ 基因微陣列
★ 發炎
★ 腎臟細胞癌
★ 癌症
★ 預防學
★ 早期發現
關鍵字(英) ★ Microarray
★ cancer
★ ccRCC
★ VHL
★ inflammation
★ metastasis
論文目次 Outline
1: Introduction 1
2: Materials and methods 4
2-1: Samples of mouse (wild-type and VHL knockout) 4
2-2: Samples of chronic kidney disease (CKD) 5
2-3: Samples of early stage and late stage cancers 7
2-4: Heat-maps 10
2-5: Biological process (BP) and pathway analysis 11
3: Results 14
3-1: Gene expression profile alterations in VHL knockout kidneys 14
3-2: Validation of inflammation signatures in VHL knockout kidney 18
3-3: Genomic similarities between kidneys from VHL knockout mice and CKD patients 24
3-4: Selecting object genes for this study 44
3-5: Some genes involved in metabolic processes are consistently down-regulated in diseased kidneys 57
3-6: Inflammatory genes and developmental genes are highly expressed in cancer initiation but not significantly in late stage 60
3-7: Cell cycle may play important roles in cancer initiation and/or progression 66
3-8: DNA damages at the onset of cancer 68
3-9: Roles of inflammation factors in late stage cancer 71
4: Conclusions and discussion 86
5: References 93
參考文獻 5: Reference
1. Li, Z., et al., Genetic mutations associated with metastatic clear cell renal cell carcinoma. Oncotarget, 2016.
2. Nilsson, H., et al., Primary clear cell renal carcinoma cells display minimal mitochondrial respiratory capacity resulting in pronounced sensitivity to glycolytic inhibition by 3-Bromopyruvate. Cell Death Dis, 2015. 6: p. e1585.
3. Wrzesinski, T., et al., Expression of pre-selected TMEMs with predicted ER localization as potential classifiers of ccRCC tumors. BMC Cancer, 2015. 15: p. 518.
4. Society, A.C., Kidney Cancer (Adult) - Renal Cell. 2014, American Cancer Society.
5. Zhang, L., et al., Growth Pattern of Clear Cell Renal Cell Carcinoma in Patients with Delayed Surgical Intervention: Fast Growth Rate Correlates with High Grade and May Result in Poor Prognosis. Biomed Res Int, 2015. 2015: p. 598134.
6. Pinthus, J.H., et al., Metabolic features of clear-cell renal cell carcinoma: mechanisms and clinical implications. Can Urol Assoc J, 2011. 5(4): p. 274-82.
7. Tun, H.W., et al., Pathway signature and cellular differentiation in clear cell renal cell carcinoma. PLoS One, 2010. 5(5): p. e10696.
8. Copland JA, M.J., Wu K, Cernigliaro JG and Tan WW, A Patient with Metastatic Clear Cell Renal Carcinoma. Ann Hematol Oncol, 2014. 1(2): p. 1007.
9. Myszczyszyn, A., et al., The Role of Hypoxia and Cancer Stem Cells in Renal Cell Carcinoma Pathogenesis. Stem Cell Rev, 2015. 11(6): p. 919-43.
10. Pattabiraman, D.R. and R.A. Weinberg, Tackling the cancer stem cells - what challenges do they pose? Nat Rev Drug Discov, 2014. 13(7): p. 497-512.
11. Bussolati, B., et al., Human renal cancer stem cells. Cancer Lett, 2013. 338(1): p. 141-6.
12. Lenburg, M.E., et al., Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data. BMC Cancer, 2003. 3: p. 31.
13. Pritchett, T.L., et al., Conditional inactivation of the mouse von Hippel-Lindau tumor suppressor gene results in wide-spread hyperplastic, inflammatory and fibrotic lesions in the kidney. Oncogene, 2015. 34(20): p. 2631-9.
14. Hsu, T., Complex cellular functions of the von Hippel-Lindau tumor suppressor gene: insights from model organisms. Oncogene, 2012. 31(18): p. 2247-57.
15. Gossage, L., T. Eisen, and E.R. Maher, VHL, the story of a tumour suppressor gene. Nat Rev Cancer, 2015. 15(1): p. 55-64.
16. Haase, V.H., The VHL/HIF oxygen-sensing pathway and its relevance to kidney disease. Kidney Int, 2006. 69(8): p. 1302-7.
17. Dallmeier, D., et al., Metabolic syndrome and inflammatory biomarkers: a community-based cross-sectional study at the Framingham Heart Study. Diabetol Metab Syndr, 2012. 4(1): p. 28.
18. Kalantar-Zadeh, K., Inflammatory marker mania in chronic kidney disease: pentraxins at the crossroad of universal soldiers of inflammation. Clin J Am Soc Nephrol, 2007. 2(5): p. 872-5.
19. Stengel, B., Chronic kidney disease and cancer: a troubling connection. J Nephrol, 2010. 23(3): p. 253-62.
20. Rea, D., et al., Inflammatory breast cancer: time to standardise diagnosis assessment and management, and for the joining of forces to facilitate effective research. Br J Cancer, 2015. 112(9): p. 1613-5.
21. Klampfer, L., Cytokines, inflammation and colon cancer. Curr Cancer Drug Targets, 2011. 11(4): p. 451-64.
22. Bishayee, A., The role of inflammation and liver cancer. Adv Exp Med Biol, 2014. 816: p. 401-35.
23. Chen, C. and G. Wang, Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy. World J Hepatol, 2015. 7(15): p. 1964-70.
24. Cohen, E.N., et al., Inflammation Mediated Metastasis: Immune Induced Epithelial-To-Mesenchymal Transition in Inflammatory Breast Cancer Cells. PLoS One, 2015. 10(7): p. e0132710.
25. Singh, A. and J. Settleman, EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010. 29(34): p. 4741-51.
26. de Vivar Chevez, A.R., J. Finke, and R. Bukowski, The role of inflammation in kidney cancer. Adv Exp Med Biol, 2014. 816: p. 197-234.
27. Tan, W., et al., Role of inflammatory related gene expression in clear cell renal cell carcinoma development and clinical outcomes. J Urol, 2011. 186(5): p. 2071-7.
28. Pena-Llopis, S., et al., BAP1 loss defines a new class of renal cell carcinoma. Nat Genet, 2012. 44(7): p. 751-9.
29. Kily, L.J., et al., Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J Exp Biol, 2008. 211(Pt 10): p. 1623-34.
30. Miller, W.R., et al., Changes in breast cancer transcriptional profiles after treatment with the aromatase inhibitor, letrozole. Pharmacogenet Genomics, 2007. 17(10): p. 813-26.
31. Manalo, D.J., et al., Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood, 2005. 105(2): p. 659-69.
32. Nakagawa, S., et al., Molecular Markers of Tubulointerstitial Fibrosis and Tubular Cell Damage in Patients with Chronic Kidney Disease. PLoS One, 2015. 10(8): p. e0136994.
33. Prinsen, B.H., et al., Increased albumin and fibrinogen synthesis rate in patients with chronic renal failure. Kidney Int, 2003. 64(4): p. 1495-504.
34. Cook, H.T., Complement and kidney disease. Curr Opin Nephrol Hypertens, 2013. 22(3): p. 295-301.
35. Jatiani, S.S., et al., Jak/STAT pathways in cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. Genes Cancer, 2010. 1(10): p. 979-93.
36. Harrison, D.A., The Jak/STAT pathway. Cold Spring Harb Perspect Biol, 2012. 4(3).
37. Carina, V., et al., Multiple pluripotent stem cell markers in human anaplastic thyroid cancer: the putative upstream role of SOX2. Thyroid, 2013. 23(7): p. 829-37.
38. Sudarshan, S., et al., Metabolism of kidney cancer: from the lab to clinical practice. Eur Urol, 2013. 63(2): p. 244-51.
39. Sorensen-Zender, I., et al., Zinc-alpha2-glycoprotein in patients with acute and chronic kidney disease. BMC Nephrol, 2013. 14: p. 145.
40. Leduc, M.S., et al., Comprehensive evaluation of apolipoprotein H gene (APOH) variation identifies novel associations with measures of lipid metabolism in GENOA. J Lipid Res, 2008. 49(12): p. 2648-56.
41. Dang, C.V., Links between metabolism and cancer. Genes Dev, 2012. 26(9): p. 877-90.
42. Zaromytidou, A.-I., Intestinal tumour initiation by dedifferentiation. Nat Cell Biol, 2013. 15(3): p. 240-240.
43. Lim, S. and P. Kaldis, Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development, 2013. 140(15): p. 3079-93.
44. Deb-Basu, D., et al., MYC can enforce cell cycle transit from G1 to S and G2 to S, but not mitotic cellular division, independent of p27-mediated inihibition of cyclin E/CDK2. Cell Cycle, 2006. 5(12): p. 1348-55.
45. Ando, K., F. Ajchenbaum-Cymbalista, and J.D. Griffin, Regulation of G1/S transition by cyclins D2 and D3 in hematopoietic cells. Proc Natl Acad Sci U S A, 1993. 90(20): p. 9571-5.
46. Zhang, Y.M., et al., Endothelin-1 promoted proliferation of vascular smooth muscle cell through pathway of extracellular signal-regulated kinase and cyclin D1. Acta Pharmacol Sin, 2003. 24(6): p. 563-8.
47. Takeda, D.Y. and A. Dutta, DNA replication and progression through S phase. Oncogene, 2005. 24(17): p. 2827-43.
48. Masuda, T., S. Mimura, and H. Takisawa, CDK- and Cdc45-dependent priming of the MCM complex on chromatin during S-phase in Xenopus egg extracts: possible activation of MCM helicase by association with Cdc45. Genes Cells, 2003. 8(2): p. 145-61.
49. Alao, J.P., The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer, 2007. 6: p. 24.
50. Wang, D., et al., The expression of glyceraldehyde-3-phosphate dehydrogenase associated cell cycle (GACC) genes correlates with cancer stage and poor survival in patients with solid tumors. PLoS One, 2013. 8(4): p. e61262.
51. Kramer, E.R., et al., Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol Biol Cell, 2000. 11(5): p. 1555-69.
52. Melkerson-Watson, L.J., et al., Elevation of lymphocyte CD45 protein tyrosine phosphatase activity during mitosis. J Immunol, 1994. 153(5): p. 2004-13.
53. Sharma, A., K. Singh, and A. Almasan, Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol, 2012. 920: p. 613-26.
54. Kuo, L.J. and L.X. Yang, Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo, 2008. 22(3): p. 305-9.
55. Coussens, L.M. and Z. Werb, Inflammation and cancer. Nature, 2002. 420(6917): p. 860-7.
56. Forster, R., L. Ohl, and G. Henning, Lessons learned from lymphocytes: CC chemokine receptor-7 involved in lymphogenic metastasis of melanoma. J Natl Cancer Inst, 2001. 93(21): p. 1588-9.
57. Lim, S.Y., et al., Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells. Oncogene, 2016.
58. Gouwy, M., et al., CXCR4 and CCR5 ligands cooperate in monocyte and lymphocyte migration and in inhibition of dual-tropic (R5/X4) HIV-1 infection. Eur J Immunol, 2011. 41(4): p. 963-73.
59. Nombela-Arrieta, C., et al., Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity, 2004. 21(3): p. 429-41.
60. Fukui, Y., et al., Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature, 2001. 412(6849): p. 826-31.
61. Park, S.H., et al., Spin90 deficiency increases CXCL13-mediated B cell migration. Scand J Immunol, 2014. 80(3): p. 191-7.
62. Hui, W., C. Zhao, and S.G. Bourgoin, LPA Promotes T Cell Recruitment through Synthesis of CXCL13. Mediators Inflamm, 2015. 2015: p. 248492.
63. Sakofsky, C.J., S. Ayyar, and A. Malkova, Break-induced replication and genome stability. Biomolecules, 2012. 2(4): p. 483-504.
64. Cullen, R., et al., Enhanced tumor metastasis in response to blockade of the chemokine receptor CXCR6 is overcome by NKT cell activation. J Immunol, 2009. 183(9): p. 5807-15.
65. Gavala, M.L., et al., Nucleotide receptor P2RX7 stimulation enhances LPS-induced interferon-beta production in murine macrophages. J Leukoc Biol, 2013. 94(4): p. 759-68.
66. You, Y., et al., Latexin sensitizes leukemogenic cells to gamma-irradiation-induced cell-cycle arrest and cell death through Rps3 pathway. Cell Death Dis, 2014. 5: p. e1493.
67. Li, Y., X. Wen, and Y. Liu, Tubular cell dedifferentiation and peritubular inflammation are coupled by the transcription regulator Id1 in renal fibrogenesis. Kidney Int, 2012. 81(9): p. 880-91.
68. Deng, W., et al., MicroRNA Replacing Oncogenic Klf4 and c-Myc for Generating iPS Cells via Cationized Pleurotus eryngii Polysaccharide-based Nanotransfection. ACS Appl Mater Interfaces, 2015. 7(34): p. 18957-66.
69. Ai, Z., et al., Maintenance of Self-Renewal and Pluripotency in J1 Mouse Embryonic Stem Cells through Regulating Transcription Factor and MicroRNA Expression Induced by PD0325901. Stem Cells Int, 2016. 2016: p. 1792573.
70. Ohtsuka, S. and H. Niwa, The differential activation of intracellular signaling pathways confers the permissiveness of embryonic stem cell derivation from different mouse strains. Development, 2015. 142(3): p. 431-7.
71. Rosano, L., F. Spinella, and A. Bagnato, Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer, 2013. 13(9): p. 637-51.
72. Kim, T.H., et al., beta-Catenin activates the growth factor endothelin-1 in colon cancer cells. Oncogene, 2005. 24(4): p. 597-604.
73. Schnoor, M., et al., Crossing the Vascular Wall: Common and Unique Mechanisms Exploited by Different Leukocyte Subsets during Extravasation. Mediators Inflamm, 2015. 2015: p. 946509.
74. Young, S.A., et al., Integrin alpha4 Enhances Metastasis and May Be Associated with Poor Prognosis in MYCN-low Neuroblastoma. PLoS One, 2015. 10(5): p. e0120815.
75. Goodridge, H.S., D.M. Underhill, and N. Touret, Mechanisms of Fc receptor and dectin-1 activation for phagocytosis. Traffic, 2012. 13(8): p. 1062-71.
76. Shivtiel, S., et al., CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules. J Exp Med, 2008. 205(10): p. 2381-95.
77. He, Z., et al., Expression of Col1a1, Col1a2 and procollagen I in germ cells of immature and adult mouse testis. Reproduction, 2005. 130(3): p. 333-41.
78. Czaja, A.J., Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol, 2014. 20(10): p. 2515-32.
79. Meng, H., et al., DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proc Natl Acad Sci U S A, 2005. 102(47): p. 17053-8.
80. D′Asti, E., et al., Coagulation and angiogenic gene expression profiles are defined by molecular subgroups of medulloblastoma: evidence for growth factor-thrombin cross-talk. J Thromb Haemost, 2014. 12(11): p. 1838-49.
81. Kushner, J.A., et al., Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol, 2005. 25(9): p. 3752-62.
82. Koyama-Nasu, R., et al., The critical role of cyclin D2 in cell cycle progression and tumorigenicity of glioblastoma stem cells. Oncogene, 2013. 32(33): p. 3840-5.
83. Sinadinos, A., et al., P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of duchenne muscular dystrophy. PLoS Med, 2015. 12(10): p. e1001888.
84. Swafford, A.D., et al., An allele of IKZF1 (Ikaros) conferring susceptibility to childhood acute lymphoblastic leukemia protects against type 1 diabetes. Diabetes, 2011. 60(3): p. 1041-4.
85. Virely, C., et al., Haploinsufficiency of the IKZF1 (IKAROS) tumor suppressor gene cooperates with BCR-ABL in a transgenic model of acute lymphoblastic leukemia. Leukemia, 2010. 24(6): p. 1200-4.
86. Raj, T., et al., Inhibition of fibroblast growth factor receptor signaling attenuates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 2006. 26(8): p. 1845-51.
87. Velasco-Velazquez, M., et al., CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res, 2012. 72(15): p. 3839-50.
88. Panse, J., et al., Chemokine CXCL13 is overexpressed in the tumour tissue and in the peripheral blood of breast cancer patients. Br J Cancer, 2008. 99(6): p. 930-8.
89. Tanaka, T., et al., Chemokines in tumor progression and metastasis. Cancer Sci, 2005. 96(6): p. 317-22.
90. Hiraga, T., S. Ito, and H. Nakamura, Cancer stem-like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and hyaluronan production. Cancer Res, 2013. 73(13): p. 4112-22.
91. Wu, C.-I., et al., Impacts of protease inhibitors on clathrin and fibronectin in cancer metastasis. Biomarkers and Genomic Medicine, 2014. 6(1): p. 23-31.
92. Salama, R.H.M., et al., Midkine, a heparin-binding growth factor, produced by the host enhances metastasis of Lewis lung carcinoma cells. Cancer Letters, 2006. 233(1): p. 16-20.
指導教授 徐沺(Tien Hsu) 審核日期 2016-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明