博碩士論文 103827005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.133.156.156
姓名 翁祖駿(Tsu-Chun Weng)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 研究設計全氟碳化物光生物反應器系統用以純化沼氣並藉此提升微藻生物質及生質能源之產量
(Developing Perfluorinated Photobioreactor System to Purify Biogas and Concurrently Enhance Yields of Biomass and Biolipid of Microalgae)
相關論文
★ 可動態改變外翻力矩的治療退化性膝關節炎輔具★ 聚乙二醇對於擬球藻生長與脂質堆積之影響
★ 製備包覆靛氰綠及阿黴素之聚乳酸甘醇酸-聚乙二醇交聯標靶奈米粒子用於乳癌光/化學治療之研究★ 研製包覆靛氰綠與阿黴素之標靶氟化奈米乳劑用於乳癌光/化學治療之研究
★ 針對糖尿病足潰瘍設計並製作一種抗菌且能促進傷口癒合的甲殼素複合式水凝膠之研究★ 利用PLGA微球載體結合超聲波駐波場以提高巨噬細胞藥物輸送之效率
★ 以血流動力系統探討血管內皮細胞在尼古丁刺激下對層流剪應力之型態異常與自體凋亡之表現變化★ 以板式流道系統模擬血管內皮細胞於層流剪力影響下受尼古丁刺激產生發炎反應之研究
★ 結合超聲波駐波場與層堆疊自體組裝微球載體建構提高分子傳遞至細胞內效率之方法★ 製備包覆靛氰綠之聚乳酸甘醇酸標靶奈米粒子用於乳癌光熱暨光動治療之研究
★ 建構駐波聲場光生物反應器系統用於提升密閉式微藻養殖效能之研究★ 研製包覆靛氰綠與利福平之聚乳酸-聚甘醇酸奈米粒子應用於介質內細菌感染治療之研究
★ 雙離子矽氧烷共聚物以沉積法對聚二甲基矽氧烷進行生物相容性修飾★ 開發具有抗菌、消炎、供氧及促使細胞生長特性可注射溫感性水凝膠用於慢性傷口癒合之研究
★ 設計開發一多效複合式殼聚醣水凝膠用於慢性傷口修復之研究★ 丙烯酸胜肽用於開發醫療用途生物活性高分子材料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 一般沼氣中約含有40%的二氧化碳,而該成分已知會嚴重影響沼氣的燃燒效能並造成溫室效應。微藻能通過光合作用回收二氧化碳並能產出生物質能,由此展現出微藻對沼氣中二氧化碳去除能力的高潛在發展性。然而,給予微藻的二氧化碳的量必須適當控制以確保微藻不致反向造成生長抑制。全氟碳化物(Perfluorocarbon;PFC);烴類的氟取代的衍生物,與水相比之下能溶解大量的呼吸和其它非極性氣體。因此,本研究將微藻與PFC做結合,設計一套全氟碳化物光生物反應器系統(Perfluorinated Photobioreactor System;PPBRS),其可同時純化沼氣並利用PFC調節供給微藻生長之二氧化碳含量以進一步提升微藻產能。首先,我們先測試不同氣體流速對於擬球藻生長的影響,使用空氣模擬不同氣體流速進行試驗。接著測試不同濃度之二氧化碳其濃度範圍在1-6%對微藻生長、生物質、脂質與二十碳五烯酸(eicosapentaenoic acid;EPA)產量的影響。此外,我們評估PFC對混合氣體中二氧化碳的吸碳能力進行測試。最後,我們測試PPBRS全系統對沼氣純化能力與提升微藻生長能力及產率之效能。由實驗結果中發現,充入的氣體流速提升越高,生長狀態越佳,由最高速1000 mL/min與無通氣來看其中第五天細胞濃度上提高了7倍,從中確定了流速對微藻生長了影響力。接著我們選定20 mL/min 流速並使用PFC調整供給微藻的二氧化碳濃度。在供給不同濃度二氧化碳對微藻生長的實驗中,我們發現從培養五天後的細胞濃度與同流速通空氣的組別相比,接受攜帶2%二氧化碳PFC的細胞其濃度提高了2倍,而生物質、總脂質與總EPA產量也均提高2倍左右,顯示為最佳之微藻培養條件。另外我們從PFC對混合氣體(60% N2-40% CO2)中二氧化碳的擷取能力進行測試中,在相同出氣量與流速的狀態中發現在12小時內FC-40的吸收碳能力是水溶液的2倍。經由以上實驗結果,我們以流速20 mL/min通入2%濃度之二氧化碳以及混合氣體(60% N2-40% CO2)出氣量1.42 mL/min 條件操作PPBRS,並進行氣體純化與微藻生長效能的實際測試。結果顯示PPBRS能夠有效吸收混合氣體中的二氧化碳並使其濃度在操作5天內維持在5% 以下,且能夠同時提升擬球藻生物質2倍的產量。綜合以上所述,本研究中所設計開發之全氟碳化物光生物反應器系統(PPBRS)預期可作為提供純化沼氣與提升微藻生物質與脂質產量之裝置。
摘要(英) Normally biogas contains ~40% CO2 and it may severely hinder the combustion efficiency of biogas and cause greenhouse effect accordingly. Microalgae have been known to be able to recycle/metabolize CO2 through photosynthesis and produce abundance of chemicals/biologicals in form of biomass and/or biolipids, showing a high potential for use in CO2 removal for biogas purification. However, the amount of CO2 given to microalgae has to be adequately controlled to avoid CO2-induced inhibitory effect on the microalgal growth. To meet this goal, a perfluorocarbon (PFC)-mediated photobioreactor setup, named perfluorinated photobioreactor system (PPBRS), was developed in this study. We first examined the effect of gas flow rate on the growth of Nannochloropsis oculata (N. oculata) by using normal air as the model gas. Then we investigated 1) how the concentration of CO2 in range of 1 – 6% affects the growth and productions of N. oculata, including biomass, total lipid, and eicosapentaenoic acid (EPA); and 2) capability of PPBRS for CO2 absorption from a mixture gas in sequence. Ultimately the effects of using PPBRS to absorb CO2 form a mixture gas and convert those isolated CO2 to enhanced growth and productions of N. oculata were comprehensively examined. Our data show that the microalgal growth enhanced along with increase of the flow rate of air that the concentration of cells provided by air with flow rate of 1000 mL/min remarkably enhanced 7 folds as compared to the group without air supply. Among different CO2 concentrations provided by FC-40 with flow rate of 20 mL/min, the group with 2% CO2 exhibits the highest productions of N. oculata that the concentration of microalgae, as well as their productions of biomass, total lipid, and EPA dramatically enhanced 2 folds after operation for 5 days, showing that 2% CO2 is the optimal setting for N. oculata growth in PPBRS. In addition, our results show that the capacity of FC-40-mediated purification unit for CO2 adsorption from a N2/CO2 mixture (N2 : CO2 = 3:2 v/v) is 2-fold higher than that obtained by using water within 12 h, implicating that PPBRS is capable for CO2 isolation. Through the operation with PPBRS, we found that the CO2 concentration remaining in the input N2/CO2 mixture (N2 : CO2 = 3:2 v/v) was < 5% (v/v) throughout the experiment and the concentration of N. oculata cultured with isolated CO2 significantly enhanced 2 folds as compared to the cells normally cultivated with air supply under equal delivery velocity (20 mL/min). In summary, we anticipate that the developed PPBRS may offer a feasible means to 1) isolate CO2 from biogas and 2) enhance microalgal growth and productions concurrently in a closed and large-scale setting.
關鍵字(中) ★ 沼氣
★ 二氧化碳
★ 微藻
★ 光生物反應器
★ 全氟碳化物
★ 生物質
關鍵字(英) ★ Biogas
★ Carbon dioxide
★ Microalgae
★ Photobioreactor
★ Perfluorocarbon
★ Biomass
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 x
表目錄 xii
第一章 緒論 - 1 -
1-1前言 - 1 -
1-2研究目的: - 5 -
第二章 文獻回顧 - 6 -
2-1. 沼氣 - 6 -
2-2. 沼氣特性 - 6 -
2-3. 二氧化碳對沼氣的影響 - 7 -
2-4. 二氧化碳分離技術 - 9 -
2-4-1. 化學吸收法 - 9 -
2-4-2. 物理吸收法 - 9 -
2-4-3.化學吸附法 - 10 -
2-4-4. 物理吸附法 - 10 -
2-4-5. 冷凍分離法 - 10 -
2-4-6. 薄膜分離法 - 11 -
2-4-7. 固態化學吸收法 - 11 -
2-4-8. 生物反應法 - 11 -
2-5 微藻介紹 - 12 -
2-6 擬球藻介紹 - 15 -
2-7 影響微藻隻生長與脂質堆積的環境因子 - 16 -
2-7-1. 氮源濃度 - 16 -
2-7-2. 鹽度 - 17 -
2-7-3. 溫度 - 18 -
2-7-4. pH值 - 18 -
2-7-5. 氧氣 - 19 -
2-7-6. 二氧化碳 - 20 -
2-8. 光生物反應器之分類與技術發展 - 21 -
2-8-1. 反應器設計 - 22 -
2-9. 全氟碳化物於生物技術上之應用 - 23 -
2-9-1全碳氟化物介紹 - 23 -
2-9-2全碳氟化物生化工程上的應用 - 25 -
2-9-3全碳氟化物細胞培養技術 - 26 -
2-9-4微藻細胞培養與保存 - 27 -
第三章 實驗材料與方法 - 28 -
3-1. 實驗設計 - 28 -
3-2. 實驗儀器設備與藥品耗材 - 29 -
3-3. 韋因培養基(Walnes’ medium)成分 - 32 -
3-4. 藻種的來源與培養 - 33 -
3-5. 擬球藻脂質之萃取 - 34 -
3-6擬球藻脂質中EPA含量分析 - 35 -
3-7 全氟碳化物對沼氣純化效率分析 - 35 -
3-8 數據和統計分析 - 37 -
第四章 結果與討論 - 38 -
4-1不同通氣速率對擬球藻生長的影響 - 38 -
4-2探討不同的二氧化碳體積百分濃度對擬球藻生長的影響 - 40 -
4-2-1 光生物反應器(微藻培養室) - 40 -
4-3 二氧化碳濃度對於擬球藻生物質產量及脂質堆積的影響 - 45 -
4-4 PFC純化效率分析 - 47 -
4-4-1 氣體純化單元 - 47 -
4-5 PPBRS同時於微藻養殖與氣體純化效能測試 - 52 -
第五章 結論 - 55 -
第六章 未來展望 - 56 -
參考文獻 - 57 -
附錄 - 64 -
參考文獻 1. 林詩婉。沼氣中二氧化碳與甲烷氣體之最佳分離吸附濟探討。國立交通學工學院。2011。
2. 謝誌鴻。微藻培養與微藻油脂生產之研究。國立成功大學化學工程學系。1999。
3. Y. H. Lee, Y. L. Yeh, Reduction of oxygen inhibition effect for microalgal growth using fluoroalkylated methoxy polyethylene glycol-stabilized perfluorocarbon nano-oxygen carriers. Process Biochemistry, Vol. 50, p 1119–1127, 2015.
4. 葉昱伶。聚乙二醇對於擬球藻生長與脂質堆積之影響。國立中央大學生物醫學工程研究所。2013。
5. 三加一能量科技股份有限公司‐拯救地球~氣候變遷,比二氧化碳威力更強的溫室氣體http://www.theage.com.au/opinion/the‐missing‐link‐in‐the‐garnaut‐report‐20080709‐3cjh.html?page=‐1http://en.wikipedia.org/wiki/Methane
6. I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane. Geophysical Research Letters, Vol. 33, p 22808, 2006.
7. T. M. Hill, J. P. Kennett, D. L. Valentine, Z. Yang, C. M. Reddy, R. K. Nelson, R. J. Behl, C. Robert, and L. Beaufort, Climatically driven emissions of hydrocarbons from marine sediments during deglaciation. Robert, and L. Beaufort, Vol. 103, p 13570‐13574, 2006.
8. 周孟津、張榕林、葡金印譯,”沼氣實用技術”,化學工業出版社,P:282‐290,2009。
9. C. M. White, B. R. Strazisar, E. J. Granite, J. S. Hoffman, and H. W. Pennline, Separation and capture of CO2 from large stationary sources and sequestration in geological formations – Coalbeds and deep saline aquifers. Journal of the Air & Waste Management Association, Vol. 53, p 645‐715, 2003.
10. IPCC Special Report on Carbon dioxide Capture and Storage, Chapter 3 (CO2 Capture) and Chapter 8 (CCS Cost) http://www.ipcc.ch/activity/srccs/index.htm, 2005.
11. D. Aaron, and C. Tsouris, Separation of CO2 from flue gas: A review. Separation Science and Technology ,Vol.40 , p 321‐348, 2005.
12. C. W. Chang, P. Tontiwachwuthikul, A Decision Support System for Solvent of CO2 Separation Process. Energy Conversion, Vol. 37, p 941‐946, 1996.
13. C. Song, Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, Vol. 115, p 2‐32, 2006.
14. M. L. Gray, Y. Soong, K. J. Champagne, H. Pennline, J. P. Baltrus, and R. W. Stevens jr, Improved immobilized carbon dioxide capture sorbents. Fuel Processing Technology, Vol.86, p 1449‐1455, 2005.
15. 洪瑛鍈、藍啟仁,“物理方法固定二氧化碳的現況” 台電工程月刊,,第629期,pp.76~90,民國90年
16. C. D. Livengood, R. D. Doctor, J. C. Molburg, P. Thimmapuram, and G. F. Berry, The Potential for Control of Carbon Dioxide Emissions from Integrated Gasification/Combined‐Cycle Systems. SciTech Connect, p 19-24, 1994.
17. E. J. Granite, and T. O’Brien, Review of novel methods for carbon dioxide separation from flue and fuel gases. Fuel Processing Technology, Vol. 86, p 1423‐1434, 2005.
18. S. Paul, A. K. Ghoshal, B. Mandal, Theoretical studies on separation of CO2 by single and blended aqueous alkanolamine solvents in flat sheet membrane contactor (FSMC). Chemical Engineering Journal, Vol.144, p 352‐360, 2008.
19. L. Meier, R. Perez, L. Azocar, M. Rivas, D. Jeison. Photosynthetic CO2 uptake by microalgae: An attractive tool for biogas upgrading. Biomass and Bioenergy, Vol. 73, p 102–109, 2015.
20. P. H. Harvey and M. D. Pagel, The comparative method in evolutionary biology. Oxford University Press, UK, 1991.
21. 謝志鴻。微藻培養與微藻油脂生產之研究。國立成功大學化學工程學系。2009。
22. E. W. Becker, Microalgae: biotechnology and microbiology. Cambridge University Press, UK, 1994.
23. Y. Chisti, Biodiesel from microalgae. Biotechnology Advances, Vol. 25, p 294-306, 2007.
24. D. H. Turpin, Effect of inorganic N availability on algal photosynthesis and carbon metabolism. Journal of phycology, Vol. 27, p 14-20, 1991.
25. C. Ratledge, Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie, Vol. 86, p 807-815 2004.
26. A. Converti, A. A. Casazza, E. Y. Ortiz, P. Perego, M. D. Borghi, Effect of temperature and nitrogen concentration on vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, Vol. 48, p 1146-1151, 2009.
27. T. Endo, U. Schreiber, and K. Asada, Suppression of quantun yield of photosystem-Ⅱ by hyperosmotic stress in Chlamydomonas-reinhardtii. Plant and Cell Physiology, Vol. 33, p 1253-1258, 1995.
28. S. M. Renaud, and D. L. Parry, Microalgae for use in tropical aquaculture II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. Journal of Applied Phycology, Vol. 6, p 347-356, 1994.
29. A. S. Cifuentes, M. A. Gonzalez, I. Inostroza, and A. Aguilera, Reappraisal of physiological attributes of nine strains of Dunaliella (Chlorophyceae): Growth and pigment content across a salinity gradient. Journal of Phycology, Vol. 37, p 334-344, 2001.
30. A. R. Rao, C. Dayananda, R. Saeada, T. R. Shamala, and G. A. Ravishanker, Effect of salinity on growth of green alga Botryococcus braunnii and its constituents. Bioresource Technology, Vol. 98, p 560-564, 2007.
31. A. B. Amotz1, T. G. Tornabene1and W. H. Thomas, Chemical profile of selected species of microalgae with emphasis on lipid. Journal of Phycology, Vol. 21, p 72-81, 1985.
32. S. M. Renaud, H. C. Zhou, D. L. Parry, L. V. Thinh, and K. C. Woo, Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp. (clone T.ISO). Journal of Applied Phycology, Vol. 7, p 595- 602, 1995.
33. S. M. Renaud, L. V. Thinh, G. Lambrinidis and D. L. Parry, Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, Vol. 211, p 195-214, 2002.
34. O. Pulz, Photobioreactors: production system for phototrophic microorganisms. Applied microbiology and biotechnology, Vol. 57, p 287-293, 2001.
35. A. Richmpnd, Handbook of microalgal mass culture. CRC press Boca Raton, FL, Vol. 528, 1986.
36. Z. Zhang, and J. P. Sachs, Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species. Organic Geochemistry, Vol. 38, p 582-608, 2007.
37. M. J. Sonnekus, Effects of Salinity on the Growth and Lipid Production of Ten Species of Microalgae from the Swartkops Saltworks: A Biodiesel Perspective. Nelson Mandela Metropolitan University, 2010.
38. F. Camacho Rubio, F. G. Acién Fernández, J. A. Sánchez Pérez, F. García Camacho, E. Molina Grima, Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, Vol. 62, p 71-86, 1999.
39. A. S. Mirón, A. C. Gómez, F. G. Camacho, E. M. Grima, Y.Chisti, Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. Journal of Biotechnology, Vol. 70, p 249-270, 1999.
40. J. C. Weissman, R. P. Goebel, J. R. Benemann, Photobioreactor design : mixing , carbon utilization, and oxygen accumulation. Biotechnology and Bioengineering, Vol. 31, p 336-344, 1988.
41. J. L. Mouget, A. Dakhama, M. C. Lavoie, J. de la Noüe, Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved. FEMS Microbiology Ecology, Vol. 18, p 35-43, 1995.
42. M. Tredici, et al., Novel photobioreactors for the mass cultivation of Spirulina spp. Bulletin de I’Institut océanographique, p 89-96, 1993
43. Richmond, A. and E. Becker, Technological aspects of mass cultivation- a general outline. CRC handbook of microalgal mass culture, p 245-63, 1986.
44. S. Aiba, Growth kinetics of photosynthetic microorganisms. Microbial reactions, Vol. 23, p 85-156, 1982.
45. P. Behrens, Photobioreactors and fermentors: the light and dark sides of growing algae. Algal culturing techniques, P 189-204, 2005
46. A. P. Carvalho, L. A. Meireles, F. X. Malcata, Microalgal reactors: a review of enclosed system designs and performances. Biotechnology progress, Vol. 22, p 1490-506, 2006
47. M. J. Barbosa, R. H. Wijffels, Overcoming shear stress of microalgae cultures in sparged photobioreactors. Biotechnology and bioengineering,Vol.85, p 78-85, 2004
48. F. G. Camacho, A. C. Gomez, T. M. Sobczuk, E. M. Grima, Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of Porphyridium cruentum. Process Biochemistry, Vol. 35, p 1045-50, 2000.
49. M. J. Barbosa, M. Albrecht, R. H. Wijffels, Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnology and bioengineering, Vol. 83, p 112-120, 2003.
50. S. T. Maxxuca, F. G. Camacho, R. F. Camacho, F. G. Acién Fernández, E. M. Grima, Carbon dioxide uptake efficiency by outdoormicroalgal cultures in tubular air life photobioreacters. Biotechnology and Bioengineering, Vol. 67, p 465-475, 2000.
51. 李柏翰。建構駐波聲場光生物反應器系統用於提升密閉式微藻養殖效能之研究。國立中央大學生物醫學與工程學系。2016。
52. G. L. Rorrer, R. K. Mullikin, Modeling and simulation of a tubular recycle photobioreactor for macroalgal cell suspension cultures. Chemical Engineering Science, Vol. 54, p 3153-3162, 1999.
53. C. Y. Chen, C. H. Liu, Y.C. Lo, J.S. Chang, Perspectives on cultivation strategies and photobioreactor designs for photo-fermentative hydrogen production. Bioresource technology, Vol. 102, p 8484- 8492, 2011.
54. A. P. Carvalho, L.A. Meireles, and F. X. Malcata, Microalgal Reactors: A Review of Enclosed System Designs and Performances. Biotechnology Progress, Vol. 22, p 1490-1506, 2006.
55. Y. H. Lee, Y. L. Yeh, K. H. Lin, Y. C. Hsu, Using fluorochemical as oxygen carrier to enhance the growth of marine microalga Nannochloropsis oculata. Bioprocess and Biosystems Engineering, Vol. 36, p 1071–1078, 2013.
56. K. C. Lowe, M. R. Davey, J. B. Power,Perfluorochemicals: their applications and benefits to cell culture. Vol. 16, p 272-277, 1998.
57. A. T. King,B. J. Mulligan, and K. C. Lowe, Biotechnology7. P 1037-1042, 1989.
58. K. C. Lowe, Perfluorochemical respiratory gas carriers: benefits to cell culture systems. Journal of Fluorine Chemistry, Vol. 118, p 19-26, 2002.
59. K. C. Lowe, Engineering blood: synthetic substitutes from fluorinated compound. Tissue Engineering , Vol. 9, p 389-399, 2003.
60. L. C. Clark, and F. Gollan, Science 152, p 1755–1756, 1966.
61. C. L. Kenneth, R. D. Michael and J. B. Power. Perfluorochemicals: their applications and benefits to cell culture. Tibtech ,Vol 16, p 272-277, 1998.
62. E. Maillard, M. T. Juszczak, A. Langlois, C. Kleiss, M. Sencier, W. Bietiger, M. Sanchez-Dominguez, M. P. Krafft, P. R. Johnson, M. Pinget, S. Sigrist, Perfluorocarbon emulsions prevent hypoxia of pancreatic β cells. Cell Transplant, Vol. 21, p 657-669, 2012.
63. S. F. Khattak, K. S. Chin, S. R. Bhatia, S. C. Roberts, Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnology and Bioengineering Vol. 96, p 156-166, 2007.
64. F. S. Moolmana, H. Rolfesb, S. W. van der Merwec, W. W. Fockea, Optimization of perfluorocarbon emulsion properties for enhancing oxygen mass transfer in a bio-artificial liver support system. Biochemical Engineering Journal, Vol.19, p 237-250, 2004.
65. L. K. Ju, J. F. Lee, W. B. Armiger, Enhancing oxygen transfer in bioreactors by perfluorocarbon emulsions. Biotechnol Progress, Vol. 7, p 323-329, 1991.
66. J. D. Mcmillan, D. I. C. Wang, Enhanced oxygen transfer using oil-in-water dispersions. Biochemical Engineering, Vol. 506, p 569-82, 1987.
67. P. Cabrales, J. C. Briceño, Delaying blood transfusion in experimental acute anemia with a perfluorocarbon emulsion. Anesthesiology, Vol. 114, p 901-911, 2011.
68. C. A. Frakera, A. J. Mendezb, L. Inverardib, C. Ricordia, C. L. Stablera, Optimization of perfluoro nano-scale emulsions: The importance of particle size for enhanced oxygen transfer in biomedical applications. Colloids and Surfaces B: Biointerfaces, Vol. 98C, p 26-35, 2012.
69. B. D. Spiess, Perfluorocarbon emulsions as a promising technology: a review of tissue and vascular gas dynamics. Journal of Applied Physiology, Vol. 106, p 1444-1452, 2009.
70. L. M. Kornmann, K. D. Reesink, R. S. Reneman†, A. P.G. Hoeks, Critical appraisal of targeted ultrasound contrast agents for molecular imaging in large arteries. Ultrasound in Medicine & Biology, Vol. 36, p 181-191, 2010.
71. R. Díaz-López, N. Tsapis, E. Fattal, Liquid perfluorocarbons as contrast agents for ultrasonography and F-MRI. Pharmaceutical Research, Vol. 27, p 1-16, 2010.
72. K. Shiraishia, R. Endoha, H. Furuhataa, M. Nishiharab, R. Suzukic, K. Maruyamac, Y. Odac, J.I. Jod, Y. Tabatad, J. Yamamotoe, M. Yokoyamaa, A facile preparation method of a PFC-containing nano-sized emulsion for theranostics of solid tumors. International Journal of Pharmaceutics, Vol. 421, p 379-387, 2011.
73. N. Rapoporta, K. H. Nama, R. Guptaa, Z. Gaoa, P. Mohana, A. Payneb, N. Toddb, X. Liub, T. Kimb, J. Sheac, C. Scaifec, D. L. Parkerb, E. K. Jeongb, A. M. Kennedyd, Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. Journal of Controlled Release, Vol. 153, p 4-15, 2011.
74. M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, J. B. Fowlkes, Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions. Pharmaceutical Research, Vol. 27, p 2753-2765, 2010.
75. A. Wasanasathian, C. A. Peng, Artif. Cells, Blood Subs. Immob.Biotech, Vol. 29, p 47-55, 2001.
76. K. C. Lowe, Perfluorochemical respiratory gas carriers: benefits to cell culture systems. Journal of Fluorine Chemistry, Vol. 118, p 19-26, 2002.
77. 彭冠傑。我國沼氣回收再利用之環境與經濟效益評估。國立台北大學公共事務學院自然資源與環境管理學院。2012。
78. 陳玫佐。升質沼氣發酵特性之研究。國立中央大學環境工程研究所。2010。
指導教授 李宇翔(Yu-Hsiang Lee) 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明