博碩士論文 103827006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:54.159.85.193
姓名 彭仲祥(Chung-Hsiang Peng)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 脊椎手術用2D/3D C-arm影像輔助手術導引定位系統之研發
相關論文
★ 以擠製冷卻成型法結合相分離法製作神經再生用多孔性導管★ 整合可調式阻力之手足復健機研究
★ 顱顏整型手術用植入物之設計與製作★ 電腦輔助骨科手術用規劃及導引系統
★ 遠端遙控機械手臂腹腔鏡手術系統★ 頭部CT與MR影像之融合
★ 手術用影像導引機械人定位及鑽孔系統★ 機器人校正與醫學影像導引定位應用
★ 顱顏手術用規劃及導引系統★ 醫學用超音波影像導引系統
★ 應用3D區域成長法於腦部磁共振影像之分割★ 腦部手術用導引系統之方位校準及腦瘤影像分割
★ 超音波影像即時震波導引★ 腫瘤偵測與顱顏骨骼重建
★ 骨科手術用C-arm影像輔助規劃及導引系統★ 細胞顯微影像分割與運動分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2022-9-27以後開放)
摘要(中) 椎莖螺釘手術為高風險與高難度的手術,在手術過程中醫師必須不斷拍攝C-arm影像確認手術器械不會誤傷到中樞神經,造成醫護人員與病患吸收大量輻射。本研究透過3D C-arm建立3D影像與拍攝2D影像之功能,發展一套2D/3D C-arm影像輔助導引系統,以2D影像手術導引可達到降低輻射量的目的, 3D影像手術導引可提供Axial View剖面影像,讓手術路徑規劃更精確,又2D或3D影像手術導引皆可讓手術更精確、安全、與提升手術時效。
本研究以實驗室所發展的C-arm影像輔助椎莖螺釘植入手術用導引系統為基礎,在2D C-arm影像導引部分以可以移動的X-Board取代雙層影像校正器的第二層功能,並開發自動在影像中尋找X-Board標記(鋼珠)的演算法,達到減少妨礙手術空間與提升定位精準度的目的
3D C-arm影像導引部分,將3D註冊樣板與患部一起,拍攝3D影像,透過自動化的方式完成3D影像與患部的註冊,並設計一方便的使用者介面,提供醫師可在電腦螢幕上或在患部上以定位器械進行手術路徑規劃,系統會隨者定位器械的尖點位置與角度即時切出對應的Axial 、Sagittal與 Coronal Views,讓醫師可直覺地確認手術路徑的正確性。
由2DC-arm影像導引單點定位精準度實驗結果知,X-Board在AP與LA拍攝時建議X-Board盡量遠離接收端,可達到良好的定位效果,其平均誤差值為0.49±0.2mm。在3DC-arm影像導引定位實驗得知,3D方位校準精準度誤差值會隨者目標點離3D註冊樣板越遠而越高,在離3D註冊樣板距離為11cm左右其最大定位誤差值為1.78mm已小於臨床使用導引系統的2mm誤差值。

關鍵字: 3D C-arm、C-arm手術導引、脊椎手術
摘要(英)
Pedicle screws implantation is a high-risk surgery. During operation, the surgeon has to take a lot of C-arm X-Ray images to check if the pedicle screw is in the right path. The medical persons and patient are thus facing a risk of high radiation exposure. This study uses 3D and 2D X-ray images provided by a 3D C-arm to develop a 2D/3D C-arm image assisted surgical navigation system. The 2D system uses only two C-arm images and thus is able to reduce radiation exposure while 3D system is able to provide axial view of the spine for precise path planning. 2D or 3D system leads to more accurate, safe, and efficient surgery .
Instead of using the existing double-deck image calibrator, the 2D system applies a free-movable X-Board and a single-deck image calibrator to determine the focus point of C-arm X-ray. The approach can reduce the interference of surgical space and improves positioning accuracy of the system using double-deck image calibrator. The 3D system is able to automatically register 3D images and the patient through a registration board. The system provides a friendly user interface for the surgeon to plan surgical paths on the computer displayed axial, sagittal, and coronal views or on the patient by using a positioning tool.
As the results of positioning experiments of 2D system, it is suggested to place the X-Board far away from the C-arm image receiver to obtain precise C-arm projection model and thus to improve positioning accuracy of the system. The average positioning error of single target point is 0.49 ± 0.2mm. On the other hand, the results of the positioning experiment of the3D system show that the positioning error is proportional to the distance between the target and registration board. When the distance reaches 11 cm, the maximum positioning error of system is 1.78mm, however, it is still less the expected 2mm required for clinic application.
Key Word : 3D C-arm、surgical navigation system、spine surgery
?
關鍵字(中) ★ 3D C-arm
★ C-arm手術導引
★ 脊椎手術
關鍵字(英) ★ 3D C-arm
★ surgical navigation system
★ spine surgery
論文目次
中文摘要 V
ABSTRACT VI
目錄 VIII
圖目錄 X
表目錄 XIII
第1章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 3
1-3 論文簡介 7
第2章 2D系統研究方法 9
2-1 2D系統座標間之轉換關係 9
2-2 C-arm 系統介紹 10
2-2-1 C-arm投影中心 11
2-2-2 影像輔助手術導引系統概述 12
2-2-3 2D椎莖螺釘植入之手術導引系統 13
2-3 特徵標記點自動配對演算法 14
2-4 2D系統樣板設計 17
2-5 多角度攝影空間定位技術 21
第3章 3D系統研究方法 23
3-1 3D系統座標間之轉換關係 23
3-2 3D椎莖螺釘植入之手術導引系統 23
3-3 3D方位校準方式 24
3-3-1 自動辨識標記點演算法 25
3-3-2 自動配對標記點演算法 29
3-4 3D樣板隱藏演算法 31
3-5 3D系統手術路徑規劃方式 32
3-6 3D系統導引方式 35
第4章 結果與討論 39
4-1 平板式C-arm不扭曲驗證 39
4-2 2D C-arm Model精準度特性實驗 42
4-3 2D系統定位精?度驗證實驗 46
4-4 3D方位校準精?度驗證實驗 51
4-5 3D方位校準分層精?度驗證實驗 53
第5章 結論與未來展望 61
參考文獻 63
參考文獻
1. Gebhard, F.T., et al., Does computer-assisted spine surgery reduce intraoperative radiation doses? Spine, 2006. 31(17): p. 2024-2027.
2. Foley, K.T., et al., Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine, 2001. 26(4): p. 347-351.
3. http://www.medtronic.com/us-en/index.html.
4. https://www.brainlab.com/en/.
5. Kalender, W.A. and Y. Kyriakou, Flat-detector computed tomography (FD-CT). European radiology, 2007. 17(11): p. 2767-2779.
6. Weise, L., et al., Intraoperative 3D fluoroscopy in stereotactic surgery. Acta neurochirurgica, 2012. 154(5): p. 815-821.
7. Weise, L.M., et al., Accuracy of 3D fluoroscopy in cranial stereotactic surgery: A comparative study in phantoms and patients. Acta neurochirurgica, 2014. 156(3): p. 581-588.
8. van de Kraats, E.B., et al., Accuracy evaluation of direct navigation with an isocentric 3D rotational X-ray system. Medical image analysis, 2006. 10(2): p. 113-124.
9. Jarvers, J.-S., et al., Minimally invasive posterior C1/2 screw fixation using C1 lateral mass screws and C2 pedicle screws with 3D C-Arm-based navigation. Operative Techniques in Orthopaedics, 2013. 23(1): p. 2-8.
10. Jarvers, J.-S., et al., 3D-based navigation in posterior stabilisations of the cervical and thoracic spine: problems and benefits. Results of 451 screws. European Journal of Trauma and Emergency Surgery, 2011. 37(2): p. 109-119.
11. Bredow, J., et al., Accuracy of 3D fluoroscopy-navigated anterior transpedicular screw insertion in the cervical spine: an experimental study. European Spine Journal, 2016. 25(6): p. 1683-1689.
12. Pohlenz, P., et al., Clinical indications and perspectives for intraoperative cone-beam computed tomography in oral and maxillofacial surgery. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2007. 103(3): p. 412-417.
13. Takao, M., et al., Iliosacral screw insertion using CT-3D-fluoroscopy matching navigation. Injury, 2014. 45(6): p. 988-994.
14. Takao, M., et al., Application of a CT-3D fluoroscopy matching navigation system to the pelvic and femoral regions. Computer Aided Surgery, 2012. 17(2): p. 69-76.
15. Nasser, R., et al., Resection of spinal column tumors utilizing image-guided navigation: a multicenter analysis. Neurosurgical focus, 2016. 41(2): p. E15.
16. Hu, X. and I.H. Lieberman, Robotic-Assisted Spine Surgery.
17. Lonjon, N., et al., Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. European Spine Journal, 2016. 25(3): p. 947-955.
18. Franke, J. and N. Beisemann, Intraoperative Three-Dimensional Imaging in Fracture Treatment with a Mobile C-Arm, in Computational Radiology for Orthopaedic Interventions. 2016, Springer. p. 231-249.
19. 吳吉春, 基於 C-arm 影像的手術導引定位. 中央大學機械工程學系學位論文, 2012: p. 1-60.
20. Fahrig, R., et al., Three?dimensional computed tomographic reconstruction using a C?arm mounted XRII: Correction of image intensifier distortion. Medical physics, 1997. 24(7): p. 1097-1106.
21. 王士瑋, 使用機械手臂輔助椎莖螺釘植入之手術導引系統. 2016, 國立中央大學.
22. 陳冠君, 整合 EPnP 及導引器械之 C-arm 影像輔助脊椎手術用導引系統. 中央大學機械工程學系學位論文, 2015: p. 1-82.
23. Horn, B.K., Closed-form solution of absolute orientation using unit quaternions. JOSA A, 1987. 4(4): p. 629-642.
指導教授 曾清秀(Ching-Shiow Tseng) 審核日期 2017-9-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明