博碩士論文 103827009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.232.133.141
姓名 葉建瑄(Yeh Chien-Hsuan)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 研究探討層流剪應力於高糖環境下對膀胱癌細胞遷移與侵襲行為之影響
(Investigation of the Effects of Interstitial Fluid-Induced Laminar Shear Stress on Migration and Invasion of Bladder Cancer Cells under High Glucose Environment)
相關論文
★ 研究探討層流剪應力對泌尿上皮細胞癌於細胞週期運作之影響與機轉★ 設計並建構一全氟碳光生物反應器組用於分離混合氣體中之二氧化碳並同時提升微藻養殖及其經濟產物生成之效能
★ Synthesis, Spectral Characterization and Evaluation of Quercetin-Zinc Complex for Tumoricidal and Anti-metastasis of Human Bladder Cancer Cell★ 包覆靛氰綠與喜樹鹼之標靶全氟碳奈米乳劑 研製於強化乳癌螢光擴散光學影像暨 光/化學治療之研究
★ 研製包覆靛氰綠與絲裂黴素C之標靶全氟碳奈米乳劑應用於膀胱癌光-化學治療之研究★ 研製包覆靛氰綠及利福平之聚乳酸-聚甘醇酸奈米粒子用於破壞生物膜之抗菌治療
★ 可動態改變外翻力矩的治療退化性膝關節炎輔具★ 聚乙二醇對於擬球藻生長與脂質堆積之影響
★ 製備包覆靛氰綠及阿黴素之聚乳酸甘醇酸-聚乙二醇交聯標靶奈米粒子用於乳癌光/化學治療之研究★ 研製包覆靛氰綠與阿黴素之標靶氟化奈米乳劑用於乳癌光/化學治療之研究
★ 研究設計全氟碳化物光生物反應器系統用以純化沼氣並藉此提升微藻生物質及生質能源之產量★ 針對糖尿病足潰瘍設計並製作一種抗菌且能促進傷口癒合的甲殼素複合式水凝膠之研究
★ 利用PLGA微球載體結合超聲波駐波場以提高巨噬細胞藥物輸送之效率★ 以血流動力系統探討血管內皮細胞在尼古丁刺激下對層流剪應力之型態異常與自體凋亡之表現變化
★ 以板式流道系統模擬血管內皮細胞於層流剪力影響下受尼古丁刺激產生發炎反應之研究★ 結合超聲波駐波場與層堆疊自體組裝微球載體建構提高分子傳遞至細胞內效率之方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 高血糖已被廣泛證明為促進腫瘤細胞惡化如腫瘤轉移(Tumor metastasis)等的主要危險因素之一,然而,在先前的研究中較少人討論細胞間隙流(Interstitial fluid)與之共同影響腫瘤細胞生理的因素,因此腫瘤細胞在高血糖環境下受細胞間隙流所產生的層流剪應力(Laminar shear stress;LSS)影響下腫瘤轉移的機制是有待證實的。在本研究中,我們利用膀胱癌BFTC-905(Transitional cell carcinoma cells;TCCs)作為實驗細胞,施以葡萄糖做藥物處理,並結合平行板式流道系統模擬層流剪應力,進而探討細胞間隙流在葡萄糖介導的膀胱癌細胞遷移與侵襲的影響。實驗結果顯示膀胱癌在靜態環境下受葡萄糖刺激在24小時下對腫瘤遷移有顯著影響(P < 0.01),腫瘤遷移率提升2倍之多,而經層流剪應力(12 dynes/cm2)沖刷前處理後腫瘤遷移率下降了63%(P < 0.01),在結合葡萄糖與層流剪應力下腫瘤遷移率會比靜態組(含葡萄糖)下降了63%,且具有顯著差異(P < 0.01),表示葡萄糖有助於提升腫瘤遷移的能力,而層流剪應力則抑制其能力,此結果與吉薩染色實驗呈現一致;侵襲實驗方面,膀胱癌在靜態環境下受葡萄糖刺激在侵襲48小時內對腫瘤侵襲有顯著影響且腫瘤侵襲率提升3.6倍(P < 0.01),而經層流剪應力沖刷前處理後腫瘤侵襲率提升1.31倍(P = NS),在結合葡萄糖與層流剪應力下腫瘤侵襲率會比靜態組(含葡萄糖)下降了59% (P < 0.01),因侵襲實驗同時伴隨遷移能力的展現,經沖刷後腫瘤遷移能力大幅降低,以至於侵襲實驗與遷移實驗相仿,有趣的是,膀胱癌細胞僅受沖刷前處理後腫瘤侵襲率些微上升,代表層流剪應力提升腫瘤侵襲的能力。最後我們以p-AKT、p-Cav-1、MT1-MMP三種蛋白做為目標進行西方墨點法實驗分析膀胱癌在葡萄糖和層流剪應力共同處理後的表現,我們發現p-AKT、p-Cav-1的表現在單獨葡萄糖處理的情況下都有顯著提升(P < 0.01),MT1-MMP則些微下降,表示葡萄糖具有提升細胞遷移的能力,而與侵襲能力較無關聯;單獨以層流剪應力處理的情況下p-AKT的表現無顯著差異,p-Cav-1的表現下降(P < 0.05),MT1-MMP則顯著上升(P < 0.01),表示層流剪應力調控Cav-1並抑制細胞遷移能力且提升侵襲能力;在共同刺激處理的情況下p-AKT和p-Cav-1的表現皆有顯著下降(P < 0.05),顯示在葡萄糖環境下層流剪應力在調節p-AKT和p-Cav-1的表現具有抑制的作用,而MT1-MMP則同樣受到抑制作用。本研究顯示了膀胱癌在高血糖環境下受層流剪應力(12 dynes/cm2)刺激其細胞遷移程度顯著下降,且經由Cav-1路徑調控AKT,在腫瘤侵襲上同樣具有顯著下降的趨勢,但與層流剪應力較不具關聯性,我們推測MT1-MMP可能受其他路徑的影響,需要做進一步的研究。此一結果顯示層流剪應力在含有葡萄糖的環境下對於抑制膀胱癌的腫瘤轉移上扮演了一個有利的角色,可作為糖尿病患具膀胱癌其減緩腫瘤轉移的手段之一。
摘要(英) Hyperglycemia has been widely demonstrated as one of major risk factors for tumor deterioration such as tumor metastasis. However, the definite mechanism of how glucose affects tumor development in vivo remains unclear since the interstitial fluid; one of key physiological factors in cellular microenvironment, is usually ignored in most of prior in vitro studies. To address the above issue, in this study, we aimed to investigate the effectiveness of interstitial fluid-induced laminar shear stress (LSS) on human urinary bladder transitional cell carcinoma (BFTC-905), in respects of cellular migration and invasion, in the presence of high glucose concentration. Based on the results of Giemsa and Calcein-AM staining assays, we found that the cells with 25-mM glucose for 24 h exhibited 2.03-fold enhanced migration efficiency (P < 0.01), while the migrated cell number with 12 dynes/cm2 LSS for 4 h significantly decreased ~63% (P < 0.01) as compared with the one without glucose. On the other hand, the migrated cell number with both LSS (12 dynes/cm2) and high glucose (25 mM) is significantly decreased 63% (P < 0.01) as compared to the group treated with glucose alone, indicating that high glucose promotes cellular migration while it was inhibited by LSS. Furthermore, our data showed that the cells with 25-mM glucose for 24 h exhibited 3.6-fold (P < 0.01) enhanced invasive cell number rate, while the invasive cell number with 12 dynes/cm2 LSS for 4 h is not significant difference as compared with the one without glucose. Moreover, the invasive cell number of the BFTC-905 treated with both LSS and 25-mM glucose significantly decreased 59% as compared to the group with glucose alone. According to the Western blot analyses, we investigate the mechanism of tumor metastasis caused by synergistic effect of LSS and glucose, expressions of AKT, Cav-1 and MT1-MMP were examined. We found that expressions of both p-AKT and p-Cav-1 exhibited significantly enhanced (P < 0.01) with glucose alone, and the expressions of MT1-MMP decreased slightly. Augmented along with exposure of LSS only that the expressions of p-AKT is no significant difference, whereas LSS enabled to further decreased the p-Cav-1 (P < 0.05) but increased the MT1-MMP (P < 0.01) expression. However, the results that the expressions of p-AKT and p-Cav-1 with both LSS and glucose exhibited significant decreased, the results show that LSS has an inhibitory effect on the regulation of p-AKT and p-Cav-1 in bladder cancer cells with a high glucose environment. In addition to the expressions of MT1-MMP significant decreased with both LSS and high glucose. In our study show that cell migration of bladder cancer decreased significantly under the laminar shear stress (12 dynes/cm2) in the high glucose environment, and through the Cav-1 pathway regulate the AKT. The tumor invasion also has a decreased significantly, but it′s the less relevant with the laminar shear stress. We suppose that MT1-MMP maybe have affected by other pathways. These results showed that the LSS of tumor metastasis in bladder cancer cells suggest that mechanical microenvironment of tumor cells may play important roles, and it should be taken into account in tumor therapy and management.
關鍵字(中) ★ 高血糖
★ 層流剪應力
★ 細胞間隙流
★ 膀胱癌
★ 腫瘤遷移
★ 腫瘤侵襲
關鍵字(英) ★ AKT
★ Cav-1
★ MT1-MMP
論文目次 摘要 I
Abstract IV
致謝 VI
目錄 VII
圖目錄 X
表目錄 XIV
第一章 緒論 1
第二章 文獻回顧 3
2.1 糖尿病與癌症 3
2.2 膀胱癌 8
2.3 高血糖(Hyperglycemia)與癌症之相關研究 11
2.4 組織間隙流(Interstitial fluid flow)與癌症之相關研究 16
2.5 腫瘤轉移(Tumor metastasis )之相關研究 19
第三章 研究方法與材料 22
3.1實驗材料 22
3.1.1實驗儀器 22
3.1.2 細胞培養相關材料 23
3.1.3 實驗藥品與試劑 24
3.2 平行板流道系統 26
3.3 移行上皮細胞癌之培養 37
3.4 細胞於流道內受剪力葡萄糖刺激之沖刷實驗 37
3.5 細胞遷移與侵襲實驗 38
3.5.1 Transwell inserts 38
3.5.2 遷移實驗 40
3.5.3 侵襲實驗 42
3.6 吉姆薩染色分析 44
3.7 螢光染色分析 45
3.8 蛋白質收樣與定量分析 47
3.9 蛋白質膠體電泳 48
3.10 西方墨點法 50
3.11 統計方法 53
第四章 實驗結果 54
4.1 膀胱癌細胞受葡萄糖刺激下細胞遷移之實驗結果 54
4.2 膀胱癌細胞受層流剪應力葡萄糖刺激下細胞遷移之實驗結果 59
4.3 膀胱癌細胞受葡萄糖刺激下細胞侵襲之實驗結果 65
4.4 膀胱癌細胞受層流剪應力葡萄糖刺激下細胞侵襲之實驗結果 69
4.5 膀胱癌細胞受葡萄糖刺激下其腫瘤轉移因子之蛋白質表現 73
4.6 膀胱癌細胞受層流剪應力葡萄糖刺激下其腫瘤轉移因子之蛋白質表現 77
第五章 結論 82
第六章 後續發展與研究方向 94
第七章 參考資料 95
參考文獻
1. Wang, C., X. Wang, G. Gong, Q. Ben, W. Qiu, Y. Chen, G. Li, and L. Wang, Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: a systematic review and meta-analysis of cohort studies. Int J Cancer, 2012. 130(7): p. 1639-48.
2. Ben, Q., M. Xu, X. Ning, J. Liu, S. Hong, W. Huang, H. Zhang, and Z. Li, Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of cohort studies. Eur J Cancer, 2011. 47(13): p. 1928-37.
3. Ge, Z., Q. Ben, J. Qian, Y. Wang, and Y. Li, Diabetes mellitus and risk of gastric cancer: a systematic review and meta-analysis of observational studies. Eur J Gastroenterol Hepatol, 2011. 23(12): p. 1127-35.
4. Jiang, Y., Q. Ben, H. Shen, W. Lu, Y. Zhang, and J. Zhu, Diabetes mellitus and incidence and mortality of colorectal cancer: a systematic review and meta-analysis of cohort studies. Eur J Epidemiol, 2011. 26(11): p. 863-76.
5. Larsson, S.C. and A. Wolk, Diabetes mellitus and incidence of kidney cancer: a meta-analysis of cohort studies. Diabetologia, 2011. 54(5): p. 1013-8.
6. Larsson, S.C., N. Orsini, K. Brismar, and A. Wolk, Diabetes mellitus and risk of bladder cancer: a meta-analysis. Diabetologia, 2006. 49(12): p. 2819-23.
7. Friberg, E., N. Orsini, C.S. Mantzoros, and A. Wolk, Diabetes mellitus and risk of endometrial cancer: a meta-analysis. Diabetologia, 2007. 50(7): p. 1365-74.
8. Larsson, S.C., C.S. Mantzoros, and A. Wolk, Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer, 2007. 121(4): p. 856-62.
9. Tseng, C.H., C.K. Chong, C.P. Tseng, and T.T. Chan, Age-related risk of mortality from bladder cancer in diabetic patients: a 12-year follow-up of a national cohort in Taiwan. Ann Med, 2009. 41(5): p. 371-9.
10. Verlato, G., G. Zoppini, E. Bonora, and M. Muggeo, Mortality from site-specific malignancies in type 2 diabetic patients from Verona. Diabetes Care, 2003. 26(4): p. 1047-51.
11. Heuson, J.C., N. Legros, and R. Heimann, Influence of insulin administration on growth of the 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma in intact, oophorectomized, and hypophysectomized rats. Cancer Res, 1972. 32(2): p. 233-8.
12. Dubinett, S.M., J.M. Lee, S. Sharma, and J.J. Mule, Chemokines: can effector cells be redirected to the site of the tumor? Cancer J, 2010. 16(4): p. 325-35.
13. Gerstein, H.C., Glycosylated hemoglobin: finally ready for prime time as a cardiovascular risk factor. Ann Intern Med, 2004. 141(6): p. 475-6.
14. Khaw, K.T., N. Wareham, S. Bingham, R. Luben, A. Welch, and N. Day, Association of hemoglobin A1c with cardiovascular disease and mortality in adults: the European prospective investigation into cancer in Norfolk. Ann Intern Med, 2004. 141(6): p. 413-20.
15. Khaw, K.T., N. Wareham, S. Bingham, R. Luben, A. Welch, and N. Day, Preliminary communication: glycated hemoglobin, diabetes, and incident colorectal cancer in men and women: a prospective analysis from the European prospective investigation into cancer-Norfolk study. Cancer Epidemiol Biomarkers Prev, 2004. 13(6): p. 915-9.
16. Stattin, P., O. Bjor, P. Ferrari, A. Lukanova, P. Lenner, B. Lindahl, G. Hallmans, and R. Kaaks, Prospective study of hyperglycemia and cancer risk. Diabetes Care, 2007. 30(3): p. 561-7.
17. Wellen, K.E. and G.S. Hotamisligil, Inflammation, stress, and diabetes. J Clin Invest, 2005. 115(5): p. 1111-9.
18. Nahman, N.S., Jr., K.L. Leonhart, F.G. Cosio, and C.L. Hebert, Effects of high glucose on cellular proliferation and fibronectin production by cultured human mesangial cells. Kidney Int, 1992. 41(2): p. 396-402.
19. Swartz, M.A. and A.W. Lund, Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer, 2012. 12(3): p. 210-9.
20. Lien, S.C., S.F. Chang, P.L. Lee, S.Y. Wei, M.D. Chang, J.Y. Chang, and J.J. Chiu, Mechanical regulation of cancer cell apoptosis and autophagy: roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK. Biochim Biophys Acta, 2013. 1833(12): p. 3124-33.
21. Shieh, A.C. and M.A. Swartz, Regulation of tumor invasion by interstitial fluid flow. Phys Biol, 2011. 8(1): p. 015012.
22. Ma, S., A. Fu, G.G. Chiew, and K.Q. Luo, Hemodynamic shear stress stimulates migration and extravasation of tumor cells by elevating cellular oxidative level. Cancer Lett, 2017. 388: p. 239-248.
23. Voelkel, N.F., C. Cool, S.D. Lee, L. Wright, M.W. Geraci, and R.M. Tuder, Primary pulmonary hypertension between inflammation and cancer. Chest, 1998. 114(3 Suppl): p. 225S-230S.
24. Xiong, N., S. Li, K. Tang, H. Bai, Y. Peng, H. Yang, C. Wu, and Y. Liu, Involvement of caveolin-1 in low shear stress-induced breast cancer cell motility and adhesion: Roles of FAK/Src and ROCK/p-MLC pathways. Biochim Biophys Acta, 2017. 1864(1): p. 12-22.
25. Bin, G., W. Cuifang, Z. Bo, W. Jing, J. Jin, T. Xiaoyi, C. Cong, C. Yonggang, A. Liping, M. Jinglin, and X. Yayi, Fluid shear stress inhibits TNF-alpha-induced osteoblast apoptosis via ERK5 signaling pathway. Biochem Biophys Res Commun, 2015. 466(1): p. 117-23.
26. Suresh, S., Biomechanics and biophysics of cancer cells. Acta Biomater, 2007. 3(4): p. 413-38.
27. Zimmet, P., K.G. Alberti, and J. Shaw, Global and societal implications of the diabetes epidemic. Nature, 2001. 414(6865): p. 782-7.
28. International Diabetes Federation, 糖尿病概覽. 2014; Available from: http://www.idf.org/sites/default/files/attachments/DA6-update-poster-ZH.pdf.
29. 衛生福利部國民健康署. Available from: https://olap.hpa.gov.tw/Search.aspx?menu=100000000006&KeyWord=%E7%B3%96%E5%B0%BF%E7%97%85.
30. Chang, C., F. Lu, Y.C. Yang, J.S. Wu, T.J. Wu, M.S. Chen, L.M. Chuang, and T.Y. Tai, Epidemiologic study of type 2 diabetes in Taiwan. Diabetes Res Clin Pract, 2000. 50 Suppl 2: p. S49-59.
31. Tseng, C.H., C.P. Tseng, C.K. Chong, T.P. Huang, Y.M. Song, C.W. Chou, S.M. Lai, T.Y. Tai, and J.C. Cheng, Increasing incidence of diagnosed type 2 diabetes in Taiwan: analysis of data from a national cohort. Diabetologia, 2006. 49(8): p. 1755-60.
32. Chan, J.C., V. Malik, W. Jia, T. Kadowaki, C.S. Yajnik, K.H. Yoon, and F.B. Hu, Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA, 2009. 301(20): p. 2129-40.
33. Tseng, C.H., T.Y. Tai, C.K. Chong, C.P. Tseng, M.S. Lai, B.J. Lin, H.Y. Chiou, Y.M. Hsueh, K.H. Hsu, and C.J. Chen, Long-term arsenic exposure and incidence of non-insulin-dependent diabetes mellitus: a cohort study in arseniasis-hyperendemic villages in Taiwan. Environ Health Perspect, 2000. 108(9): p. 847-51.
34. National Cancer Institute. [10 June 2014].
35. World Health Organization. February 2014 [10 June 2014].
36. Bruce Alberts, A.J., Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter., Molecular Biology of the Cell, 4th edition. 2002.
37. Bhowmick, N.A., E.G. Neilson, and H.L. Moses, Stromal fibroblasts in cancer initiation and progression. Nature, 2004. 432(7015): p. 332-7.
38. Steeg, P.S., Tumor metastasis: mechanistic insights and clinical challenges. Nat Med, 2006. 12(8): p. 895-904.
39. Kasper, J.S. and E. Giovannucci, A meta-analysis of diabetes mellitus and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev, 2006. 15(11): p. 2056-62.
40. Flaveny, C.A., K. Griffett, D. El-Gendy Bel, M. Kazantzis, M. Sengupta, A.L. Amelio, A. Chatterjee, J. Walker, L.A. Solt, T.M. Kamenecka, and T.P. Burris, Broad Anti-tumor Activity of a Small Molecule that Selectively Targets the Warburg Effect and Lipogenesis. Cancer Cell, 2015. 28(1): p. 42-56.
41. Vigneri, P., F. Frasca, L. Sciacca, G. Pandini, and R. Vigneri, Diabetes and cancer. Endocr Relat Cancer, 2009. 16(4): p. 1103-23.
42. Yi-Jing Sheen, J.-L.L., W.H.-H. Sheu, Relationship between diabetes and cancer and the situation in Taiwan. Journal of Internal Medicine of Taiwan, February 2011.
43. Zhou, X.H., Q. Qiao, B. Zethelius, K. Pyorala, S. Soderberg, A. Pajak, C.D. Stehouwer, R.J. Heine, P. Jousilahti, G. Ruotolo, P.M. Nilsson, G. Calori, J. Tuomilehto, and D.S. Group, Diabetes, prediabetes and cancer mortality. Diabetologia, 2010. 53(9): p. 1867-76.
44. Hirakawa, Y., T. Ninomiya, N. Mukai, Y. Doi, J. Hata, M. Fukuhara, M. Iwase, T. Kitazono, and Y. Kiyohara, Association between glucose tolerance level and cancer death in a general Japanese population: the Hisayama Study. Am J Epidemiol, 2012. 176(10): p. 856-64.
45. Renehan, A.G., M. Zwahlen, C. Minder, S.T. O′Dwyer, S.M. Shalet, and M. Egger, Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet, 2004. 363(9418): p. 1346-53.
46. Garcia-Jimenez, C., J.M. Garcia-Martinez, A. Chocarro-Calvo, and A. De la Vieja, A new link between diabetes and cancer: enhanced WNT/beta-catenin signaling by high glucose. J Mol Endocrinol, 2014. 52(1): p. R51-66.
47. Knowles, M.A. and C.D. Hurst, Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer, 2015. 15(1): p. 25-41.
48. Ferlay, J., H.R. Shin, F. Bray, D. Forman, C. Mathers, and D.M. Parkin, Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 2010. 127(12): p. 2893-917.
49. Hatina, J., W. Huckenbeck, H. Rieder, H.H. Seifert, and W.A. Schulz, [Bladder carcinoma cell lines as models of the pathobiology of bladder cancer. Review of the literature and establishment of a new progression series]. Urologe A, 2008. 47(6): p. 724-34.
50. Giovannucci, E., Insulin, insulin-like growth factors and colon cancer: a review of the evidence. J Nutr, 2001. 131(11 Suppl): p. 3109S-20S.
51. Klement, R.J. and U. Kammerer, Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutr Metab (Lond), 2011. 8: p. 75.
52. Krone, C.A. and J.T. Ely, Controlling hyperglycemia as an adjunct to cancer therapy. Integr Cancer Ther, 2005. 4(1): p. 25-31.
53. Dankner, R., A. Chetrit, and P. Segal, Glucose tolerance status and 20 year cancer incidence. Isr Med Assoc J, 2007. 9(8): p. 592-6.
54. Vander Heiden, M.G., L.C. Cantley, and C.B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009. 324(5930): p. 1029-33.
55. Graham, N.A., M. Tahmasian, B. Kohli, E. Komisopoulou, M. Zhu, I. Vivanco, M.A. Teitell, H. Wu, A. Ribas, R.S. Lo, I.K. Mellinghoff, P.S. Mischel, and T.G. Graeber, Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol Syst Biol, 2012. 8: p. 589.
56. Dowling, R.J., S. Niraula, V. Stambolic, and P.J. Goodwin, Metformin in cancer: translational challenges. J Mol Endocrinol, 2012. 48(3): p. R31-43.
57. Yun, J., C. Rago, I. Cheong, R. Pagliarini, P. Angenendt, H. Rajagopalan, K. Schmidt, J.K. Willson, S. Markowitz, S. Zhou, L.A. Diaz, Jr., V.E. Velculescu, C. Lengauer, K.W. Kinzler, B. Vogelstein, and N. Papadopoulos, Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science, 2009. 325(5947): p. 1555-9.
58. Heuson, J.C. and N. Legros, Influence of insulin deprivation on growth of the 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma in rats subjected to alloxan diabetes and food restriction. Cancer Res, 1972. 32(2): p. 226-32.
59. Nerem, R.M., Tissue engineering: the hope, the hype, and the future. Tissue Eng, 2006. 12(5): p. 1143-50.
60. Rutkowski, J.M. and M.A. Swartz, A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol, 2007. 17(1): p. 44-50.
61. Jain, R.K., Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science, 2005. 307(5706): p. 58-62.
62. Mitchell, M.J. and M.R. King, Computational and experimental models of cancer cell response to fluid shear stress. Front Oncol, 2013. 3: p. 44.
63. Shieh, A.C., H.A. Rozansky, B. Hinz, and M.A. Swartz, Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res, 2011. 71(3): p. 790-800.
64. Wallin, P. Cell microenvironment. Available from: https://patricwallin.wordpress.com/science/cell-microenvironment/.
65. Tse, J.M., G. Cheng, J.A. Tyrrell, S.A. Wilcox-Adelman, Y. Boucher, R.K. Jain, and L.L. Munn, Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci U S A, 2012. 109(3): p. 911-6.
66. Cheng, G., J. Tse, R.K. Jain, and L.L. Munn, Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS One, 2009. 4(2): p. e4632.
67. Helmlinger, G., P.A. Netti, H.C. Lichtenbeld, R.J. Melder, and R.K. Jain, Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol, 1997. 15(8): p. 778-83.
68. Koike, C., T.D. McKee, A. Pluen, S. Ramanujan, K. Burton, L.L. Munn, Y. Boucher, and R.K. Jain, Solid stress facilitates spheroid formation: potential involvement of hyaluronan. Br J Cancer, 2002. 86(6): p. 947-53.
69. Hofmann, M., M. Guschel, A. Bernd, J. Bereiter-Hahn, R. Kaufmann, C. Tandi, H. Wiig, and S. Kippenberger, Lowering of tumor interstitial fluid pressure reduces tumor cell proliferation in a xenograft tumor model. Neoplasia, 2006. 8(2): p. 89-95.
70. Levental, K.R., H. Yu, L. Kass, J.N. Lakins, M. Egeblad, J.T. Erler, S.F. Fong, K. Csiszar, A. Giaccia, W. Weninger, M. Yamauchi, D.L. Gasser, and V.M. Weaver, Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 2009. 139(5): p. 891-906.
71. Chang, S.F., C.A. Chang, D.Y. Lee, P.L. Lee, Y.M. Yeh, C.R. Yeh, C.K. Cheng, S. Chien, and J.J. Chiu, Tumor cell cycle arrest induced by shear stress: Roles of integrins and Smad. Proc Natl Acad Sci U S A, 2008. 105(10): p. 3927-32.
72. Qazi, H., Z.D. Shi, and J.M. Tarbell, Fluid shear stress regulates the invasive potential of glioma cells via modulation of migratory activity and matrix metalloproteinase expression. PLoS One, 2011. 6(5): p. e20348.
73. Munson, J.M. and A.C. Shieh, Interstitial fluid flow in cancer: implications for disease progression and treatment. Cancer Manag Res, 2014. 6: p. 317-28.
74. Wan, L., K. Pantel, and Y. Kang, Tumor metastasis: moving new biological insights into the clinic. Nat Med, 2013. 19(11): p. 1450-64.
75. Nguyen, D.X. and J. Massague, Genetic determinants of cancer metastasis. Nat Rev Genet, 2007. 8(5): p. 341-52.
76. Barcia, J.J., The Giemsa stain: its history and applications. Int J Surg Pathol, 2007. 15(3): p. 292-6.
77. Decherchi, P., P. Cochard, and P. Gauthier, Dual staining assessment of Schwann cell viability within whole peripheral nerves using calcein-AM and ethidium homodimer. J Neurosci Methods, 1997. 71(2): p. 205-13.
78. Takatani-Nakase, T., C. Matsui, S. Maeda, S. Kawahara, and K. Takahashi, High glucose level promotes migration behavior of breast cancer cells through zinc and its transporters. PLoS One, 2014. 9(2): p. e90136.
79. Takatani-Nakase, T., Migration behavior of breast cancer cells in the environment of high glucose level and the role of zinc and its transporter. Yakugaku Zasshi, 2013. 133(11): p. 1195-9.
80. Zhu, S., F. Yao, W.H. Li, J.N. Wan, Y.M. Zhang, Z. Tang, S. Khan, C.H. Wang, and S.R. Sun, PKC?-dependent activation of the ubiquitin proteasome system is responsible for high glucose-induced human breast cancer MCF-7 cell proliferation, migration and invasion. Asian Pac J Cancer Prev, 2013. 14(10): p. 5687-92.
81. Normand Pouliot, H.B.P., and Allan Burrows., Investigating Metastasis Using In Vitro Platforms. Madame Curie Bioscience Database [Internet]. 2000-2013.
82. Lawler, K., G. Meade, G. O′Sullivan, and D. Kenny, Shear stress modulates the interaction of platelet-secreted matrix proteins with tumor cells through the integrin alphavbeta3. Am J Physiol Cell Physiol, 2004. 287(5): p. C1320-7.
83. Yang, H., L. Guan, S. Li, Y. Jiang, N. Xiong, L. Li, C. Wu, H. Zeng, and Y. Liu, Mechanosensitive caveolin-1 activation-induced PI3K/AKT/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo. Oncotarget, 2016. 7(13): p. 16227-47.
84. YU-HSIANG LEE, C.-C.L., CHIEN-HSUN HUANG, FENG-MING HO, Laminar Shear Stress Promotes Nicotine-Induced Inflammation and Hemostatic Expression in Human Endothelial Cells. biomedical engineering society, 2016. 9.
85. Qian, Y., L. Corum, Q. Meng, J. Blenis, J.Z. Zheng, X. Shi, D.C. Flynn, and B.H. Jiang, PI3K induced actin filament remodeling through AKT and p70S6K1: implication of essential role in cell migration. Am J Physiol Cell Physiol, 2004. 286(1): p. C153-63.
86. Luo, J., B.D. Manning, and L.C. Cantley, Targeting the PI3K-AKT pathway in human cancer: rationale and promise. Cancer Cell, 2003. 4(4): p. 257-62.
87. Kim, C.S., V.V. Vasko, Y. Kato, M. Kruhlak, M. Saji, S.Y. Cheng, and M.D. Ringel, AKT activation promotes metastasis in a mouse model of follicular thyroid carcinoma. Endocrinology, 2005. 146(10): p. 4456-63.
88. Guan, Z., X.R. Wang, X.F. Zhu, X.F. Huang, J. Xu, L.H. Wang, X.B. Wan, Z.J. Long, J.N. Liu, G.K. Feng, W. Huang, Y.X. Zeng, F.J. Chen, and Q. Liu, Aurora-A, a negative prognostic marker, increases migration and decreases radiosensitivity in cancer cells. Cancer Res, 2007. 67(21): p. 10436-44.
89. Manning, B.D. and L.C. Cantley, AKT/PKB signaling: navigating downstream. Cell, 2007. 129(7): p. 1261-74.
90. Liao, Y. and M.C. Hung, Physiological regulation of AKT activity and stability. Am J Transl Res, 2010. 2(1): p. 19-42.
91. Gingras, A.C., S.P. Gygi, B. Raught, R.D. Polakiewicz, R.T. Abraham, M.F. Hoekstra, R. Aebersold, and N. Sonenberg, Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev, 1999. 13(11): p. 1422-37.
92. Rosenwald, I.B., The role of translation in neoplastic transformation from a pathologist′s point of view. Oncogene, 2004. 23(18): p. 3230-47.
93. Cai, W., Q. Ye, and Q.B. She, Loss of 4E-BP1 function induces EMT and promotes cancer cell migration and invasion via cap-dependent translational activation of snail. Oncotarget, 2014. 5(15): p. 6015-27.
94. Fruhbeck, G., M. Lopez, and C. Dieguez, Role of caveolins in body weight and insulin resistance regulation. Trends Endocrinol Metab, 2007. 18(5): p. 177-82.
95. Quest, A.F., J.L. Gutierrez-Pajares, and V.A. Torres, Caveolin-1: an ambiguous partner in cell signalling and cancer. J Cell Mol Med, 2008. 12(4): p. 1130-50.
96. Goetz, J.G., P. Lajoie, S.M. Wiseman, and I.R. Nabi, Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev, 2008. 27(4): p. 715-35.
97. Burgermeister, E., M. Liscovitch, C. Rocken, R.M. Schmid, and M.P. Ebert, Caveats of caveolin-1 in cancer progression. Cancer Lett, 2008. 268(2): p. 187-201.
98. Joshi, B., S.S. Strugnell, J.G. Goetz, L.D. Kojic, M.E. Cox, O.L. Griffith, S.K. Chan, S.J. Jones, S.P. Leung, H. Masoudi, S. Leung, S.M. Wiseman, and I.R. Nabi, Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res, 2008. 68(20): p. 8210-20.
99. Williams, T.M. and M.P. Lisanti, Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol, 2005. 288(3): p. C494-506.
100. Albinsson, S., I. Nordstrom, K. Sward, and P. Hellstrand, Differential dependence of stretch and shear stress signaling on caveolin-1 in the vascular wall. Am J Physiol Cell Physiol, 2008. 294(1): p. C271-9.
101. Frank, P.G. and M.P. Lisanti, Role of caveolin-1 in the regulation of the vascular shear stress response. J Clin Invest, 2006. 116(5): p. 1222-5.
102. Park, H., Y.M. Go, R. Darji, J.W. Choi, M.P. Lisanti, M.C. Maland, and H. Jo, Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase. Am J Physiol Heart Circ Physiol, 2000. 278(4): p. H1285-93.
103. Wang, P., F. Zhu, Z. Tong, and K. Konstantopoulos, Response of chondrocytes to shear stress: antagonistic effects of the binding partners Toll-like receptor 4 and caveolin-1. FASEB J, 2011. 25(10): p. 3401-15.
104. Itoh, Y. and M. Seiki, MT1-MMP: an enzyme with multidimensional regulation. Trends Biochem Sci, 2004. 29(6): p. 285-9.
105. Itoh, Y., MT1-MMP: a key regulator of cell migration in tissue. IUBMB Life, 2006. 58(10): p. 589-96.
106. Pahwa, S., M.J. Stawikowski, and G.B. Fields, Monitoring and Inhibiting MT1-MMP during Cancer Initiation and Progression. Cancers (Basel), 2014. 6(1): p. 416-35.
107. Mori, H., T. Tomari, N. Koshikawa, M. Kajita, Y. Itoh, H. Sato, H. Tojo, I. Yana, and M. Seiki, CD44 directs membrane-type 1 matrix metalloproteinase to lamellipodia by associating with its hemopexin-like domain. EMBO J, 2002. 21(15): p. 3949-59.
108. Shiomi, T. and Y. Okada, MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev, 2003. 22(2-3): p. 145-52.
109. Uchibori, M., Y. Nishida, T. Nagasaka, Y. Yamada, K. Nakanishi, and N. Ishiguro, Increased expression of membrane-type matrix metalloproteinase-1 is correlated with poor prognosis in patients with osteosarcoma. Int J Oncol, 2006. 28(1): p. 33-42.
110. Poincloux, R., F. Lizarraga, and P. Chavrier, Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci, 2009. 122(Pt 17): p. 3015-24.
111. Zhang, D. and P. Brodt, Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI 3-kinase/AKT signaling. Oncogene, 2003. 22(7): p. 974-82.
指導教授 李宇翔(Lee Yu-Hsiang) 審核日期 2017-5-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明