博碩士論文 103827012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.16.81.94
姓名 林育臣(Yu-Chen Lin)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 應用腦電圖與相關臨床因子預測中風病人復原之研究
(Using EEG and Related Clinical Factors to Predict the Recovery Outcome after Stroke Rehabilitation)
相關論文
★ 足弓指標參數之比較分析★ 運用腦電波研究中風病人的復健成效 與持續情形
★ 重複間斷性Theta爆發刺激對手部運動之腦波的影響★ Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth
★ 使用虛擬實境系統誘發事件相關電位P300之研究★ 虛擬實境誘發體感覺事件相關電位P300之動態因果模型研究
★ 使用GPU提升事件相關電位之動態因果模型的運算效能★ 基於動態因果模型之老化相關的運動網路研究
★ 應用腦電圖預測中風病人復健情況★ 以益智遊戲進行空間工作記憶訓練在事件相關電位P3上的影響
★ 基於虛擬實境復健之中風後運動網路功能性重組研究★ 中風復健後與虛擬實境物理參數 相關的動作網絡重組
★ 以運動指標預測復健成效暨設計復健方針★ 運用時頻轉換分析方法研究 工作記憶訓練之人類大腦可塑性
★ 中風患者在復健後的大腦神經連結的變化★ 運用N-back任務和空間工作記憶訓練分析神經相關性能之ERP和DCM研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的在於利用復健前測量腦電圖的資料以及機器學習技術預測中風病患於接受復健治療後是否會達到「恢復良好」,並探討不同建模參數與臨床因子使用之下對於準確率的影響。研究收集53位中風患者的做肩關節屈曲/伸直(shoulder flexion/extension)時的腦電圖資料,每位患者都經過總時數24小時的復健治療並且經由三種臨床量表(FM、TEMPA、WMFT)來評估中風患者的動作功能恢復情況。其中37人的資料建立預測模型,而另外16人則用來做為驗證使用。
本研究採用機器學習的方法,將患者分為復健良好(good)以及復健一般(general)兩種情況,本研究根據臨床量表(FM、TEMPA、WMFT) 定義兩種情況:一種是後測時三種臨床量表任一個進步分數是否達到總分的10% (如 ∆FM> =6.6 ; ∆WMFT >=8.5; ∆TEMPA >=13.8 ),稱之為TypeI,結果有20位屬於復原良好;另一種以該患者後測時的三種臨床量表分數減去前測時的分數為基準,與前測的分數比較,看進步的幅度是否有達到10%,稱之為TypeII,結果有27位中風患者屬於復原良好。
在前測時,患者做80次肩關節動作同時收取腦電圖,而後將腦電圖資料經過前處理(濾波、切段)後,在周圍刺激時間點上利用廣義逆電場矩陣將前處理過的腦電圖資料推估出對側初級運動皮質區(CM1)、同側初級運動皮質區(IM1)、對側前運動區(CPM)、同側前運動區(IPM)以及輔助運動區(SMA)等五種運動區在大腦上的近似位置,再來把五種運動區所計算出的光譜密度圖利用莫萊小波(wavelet number: 7)轉換成時間頻譜圖。每次收取的腦電圖經過上述的處理後所得到的時頻圖絕對值平均起來而後進入動態因果模型之誘發響應當作該模型觀察依據並且試圖解釋。經由動態因果模型所得到的參數以及五種運動區所得到光譜密度圖擔任資料的特徵,而後將這些特徵在二分類法下利用包裝法選取特徵,分別使用四種不同的分類器:支持向量機、邏輯回歸法、貝氏分類器、J48。
分類結果在TypeI以及動態因果模型特徵下,在β+γ頻帶組合使用邏輯回歸法最高準確率92.95%,這個預測結果明顯優於使用臨床因子做預測的結果。並使用新的資料驗證後準確率亦達81.25%。此外在TypeI以及動態因果模型特徵下,邏輯回歸法與β頻帶都存在其重要性。且預測的準確率與三大因素:患者年齡、中風發生位置、中風後的時間相關。相信本研究所發現的結果可對於發展個人化最佳復健策略做出相當貢獻。
摘要(英) This study is aiming at accurate prediction of the rehabilitation outcome after stroke by using the pre-rehab electroencephalogram (EEG) and machine learning techniques and using new data to validate. 53 stroke patients were recruited for this study. 37 of them are used to build the prediction model and other 16 are used to validation. All patients underwent 24-hour rehab program and rehabilitation outcome was measured with FM, TEMP and WMFT. For supervised machine learning methods, we first divided the data into two groups : good and general recovery, according to two criteria - (1) Type I : a level of 10% improvement of any above mentioned measures (i.e ∆FM> =6.6 ; ∆WMFT >=8.5; ∆TEMPA >=13.8 ) after rehab was considered as good recovery as suggested in several studies, resulting in 20 good recovery patients (out of 37); and (2) Type II: the scale after rehab up to 10 % improvement from the before rehab scale of any above mentioned measures was labeled as good recovery, resulting in 27 good recovery patients (out of 37). The EEG data were acquired during the shoulder flexion/extension for eighty trials before the rehabilitation and were pre-processed offline for filtering and epoching. The spectral density from 4-48Hz at contralesional primary motor cortex (CM1), ipsilateral primary motor cortex (IM1), contralesional premotor area (CPM), ipsilateral premotor area (IPM) and the supplementary motor area (SMA) were obtained by projecting the EEG data to the chosen sources using the generalized inverse of the lead-field matrix over peri-stimulus time and then used a time-frequency Morlet wavelet transform (wavelet number: 7). The absolute value of the resulting time-frequency responses were averaged over trials and entered dynamic causal modeling for induced responses (DCM_IR) as the observations that the model is trying to explain. Both the spectral density at all sources and the parameters given by DCM were served as the data features. These features entered Wrapper method to select features, and the selected features went into the four different classifiers:SVM, Logistic Regression, NaiveBayes, J48 for two-class classification.
The classification result suggests that, the best accuracy rate was 0.9295 when using DCM features of β+γ frequencies of Type I data partition and Logistic Regression. And the result of construct validity is 0.8125. The accuracy of prediction with EEG data is much higher than prediction with other clinical factors. Furthermore, beta rhythm within the motor network and Logistic Regression have significant roles in motor recovery prediction. There are three factors related to the predictive accuracy. They are age, time post-stroke and lesion area of stroke. We believe that our findings in this study have great benefits on developing a knowledge-based and individual rehab program.
關鍵字(中) ★ 動態因果模型
★ 復健機制
★ 中風
★ 預測
★ 分類器
關鍵字(英) ★ dynamic causal modeling
★ rehabilitation
★ stroke
★ prediction
★ classifier
論文目次 Abstract III
目錄 IV
圖 目 錄 VI
表 目 錄 VII
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 2
1-3論文架構 2
第二章 文獻回顧 3
2-1中風評估指標 3
2-2中風復原狀況預測 6
2-3動態因果模型 11
2-3-1功能性連結與有效性連結 11
2-3-2誘發響應的動態因果模型 12
2-3-3線性/非線性效應 14
第三章 研究方法 16
3-1 定義動作功能恢復的標準 17
3-2 資料與收案來源 19
3-3 建立預測模型 23
3-3-1 DCM特徵定義 23
3-3-2 分類器 28
3-3-3 特徵提取與特徵選取 30
第四章 研究結果 35
4-1比較各個最佳模型的預測準確率 35
4-1-1 預測模型1 36
4-1-2 預測模型2 37
4-1-3 預測模型3 38
4-1-4 預測模型4 39
4-1-5 預測模型5 40
4-1-6 預測模型6 41
4-2使用不同的驗證方式 42
4-2-1建構效度(Construct Validity) 42
4-2-2 Leave-One-Out Cross Validation 46
4-3比較各種臨床因子預測的準確率 50
4-3-1 量表分數 50
4-3-2年紀 51
4-3-3 中風後時間 52
4-3-4 中風發生區域 53
4-3-5 中風發生側 54
4-3-6 中風的類型(出血或缺血) 54
第五章 討論 55
5-1腦電圖模型於中風復原預測的使用 55
5-2於建立模型時影響預測準確性的因素 57
5-2-1建立模型的人數 57
5-2-2頻帶與分類器 60
5-2-3採用的恢復標準 63
5-3不同族群適用性與準確性 66
5-4對於發展最佳個人化復健策略的貢獻 68
第六章 結論與未來發展 69
References 71
參考文獻 References
1. Stinear, C.M., et al., The PREP algorithm predicts potential for upper limb recovery after stroke. Brain, 2012. 135(Pt 8): p. 2527-35.
2. Barak, S. and P.W. Duncan, Issues in selecting outcome measures to assess functional recovery after stroke. NeuroRx, 2006. 3(4): p. 505-24.
3. Burke Quinlan, E., et al., Neural function, injury, and stroke subtype predict treatment gains after stroke. Ann Neurol, 2015. 77(1): p. 132-45.
4. Bergner, M. and M.L. Rothman, Health status measures: an overview and guide for selection. Annu Rev Public Health, 1987. 8: p. 191-210.
5. Chambers, L.W., Physical and emotional function of primary care patients: scientific requirements for the measurement of functional health status. JAMA, 1983. 249(24): p. 3353-5.
6. Kirwan, J.R., Minimum clinically important difference: the crock of gold at the end of the rainbow? J Rheumatol, 2001. 28(2): p. 439-44.
7. Hays, R.D. and J.M. Woolley, The concept of clinically meaningful difference in health-related quality-of-life research. How meaningful is it? Pharmacoeconomics, 2000. 18(5): p. 419-23.
8. Bellamy, N., et al., Towards a definition of "difference" in osteoarthritis. J Rheumatol, 2001. 28(2): p. 427-30.
9. Kirshner, B. and G. Guyatt, A methodological framework for assessing health indices. J Chronic Dis, 1985. 38(1): p. 27-36.
10. Lundquist, C.B. and T. Maribo, The Fugl-Meyer assessment of the upper extremity: reliability, responsiveness and validity of the Danish version. Disabil Rehabil, 2016: p. 1-6.
11. Moseley, A.M. and M.C. Yap, Interrater reliability of the TEMPA for the measurement of upper limb function in adults with traumatic brain injury. J Head Trauma Rehabil, 2003. 18(6): p. 526-31.
12. Morris, D.M., et al., The reliability of the wolf motor function test for assessing upper extremity function after stroke. Arch Phys Med Rehabil, 2001. 82(6): p. 750-5.
13. Duncan, P.W., et al., Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke, 1992. 23(8): p. 1084-9.
14. Loewen, S.C. and B.A. Anderson, Predictors of stroke outcome using objective measurement scales. Stroke, 1990. 21(1): p. 78-81.
15. Wade, D.T., V.A. Wood, and R.L. Hewer, Recovery after stroke--the first 3 months. J Neurol Neurosurg Psychiatry, 1985. 48(1): p. 7-13.
16. Kinsella, G. and B. Ford, Acute recovery from patterns in stroke patients: neuropsychological factors. Med J Aust, 1980. 2(12): p. 663-6.
17. Koh, C.L., et al., Predicting recovery of voluntary upper extremity movement in subacute stroke patients with severe upper extremity paresis. PLoS One, 2015. 10(5): p. e0126857.
18. Khan, M., et al., Predictors of Outcome following Stroke due to Isolated M2 Occlusions. Cerebrovasc Dis Extra, 2014. 4(1): p. 52-60.
19. Lee, S.Y., et al., Prediction of good functional recovery after stroke based on combined motor and somatosensory evoked potential findings. J Rehabil Med, 2010. 42(1): p. 16-20.
20. Denti, L., M. Agosti, and M. Franceschini, Outcome predictors of rehabilitation for first stroke in the elderly. European journal of physical and rehabilitation medicine, 2008. 44(1): p. 3-11.
21. Rehme, A.K., et al., Individual prediction of chronic motor outcome in the acute post-stroke stage: Behavioral parameters versus functional imaging. Hum Brain Mapp, 2015. 36(11): p. 4553-65.
22. Richiardi, J., et al., Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity. Neuroimage, 2012. 62(3): p. 2021-2033.
23. Shen, H., et al., Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. Neuroimage, 2010. 49(4): p. 3110-3121.
24. Wee, C.-Y., et al., Identification of MCI individuals using structural and functional connectivity networks. Neuroimage, 2012. 59(3): p. 2045-2056.
25. Zeng, L.-L., et al., Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain, 2012: p. aws059.
26. Rehme, A., et al., Identifying Neuroimaging Markers of Motor Disability in Acute Stroke by Machine Learning Techniques. Cerebral Cortex, 2014: p. bhu100.
27. Richiardi, J., et al., Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity. Neuroimage, 2012. 62(3): p. 2021-33.
28. Shen, H., et al., Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. Neuroimage, 2010. 49(4): p. 3110-21.
29. Finnigan, S.P., et al., Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes. Clinical neurophysiology, 2007. 118(11): p. 2525-2532.
30. Sainio, K., et al., Visual and spectral EEG analysis in the evaluation of the outcome in patients with ischemic brain infarction. Electroencephalography and clinical neurophysiology, 1983. 56(2): p. 117-124.
31. Cillessen, J., et al., Electroencephalography improves the prediction of functional outcome in the acute stage of cerebral ischemia. Stroke, 1994. 25(10): p. 1968-1972.
32. Szelies, B., et al., Prognostic relevance of quantitative topographical EEG in patients with poststroke aphasia. Brain and language, 2002. 82(1): p. 87-94.
33. Cuspineda, E., et al., Predicting outcome in acute stroke: a comparison between QEEG and the Canadian Neurological Scale. Clinical EEG (electroencephalography), 2003. 34(1): p. 1-4.
34. Finnigan, S.P., et al., Correlation of Quantitative EEG in Acute Ischemic Stroke With 30-Day NIHSS Score Comparison With Diffusion and Perfusion MRI. Stroke, 2004. 35(4): p. 899-903.
35. van Putten, M.J., et al., A brain symmetry index (BSI) for online EEG monitoring in carotid endarterectomy. Clinical neurophysiology, 2004. 115(5): p. 1189-1194.
36. Nagata, K., et al., Electroencephalographic correlates of blood flow and oxygen metabolism provided by positron emission tomography in patients with cerebral infarction. Electroencephalography and clinical neurophysiology, 1989. 72(1): p. 16-30.
37. Sheorajpanday, R.V., et al., Additional value of quantitative EEG in acute anterior circulation syndrome of presumed ischemic origin. Clinical Neurophysiology, 2010. 121(10): p. 1719-1725.
38. Cuspineda, E., et al., QEEG prognostic value in acute stroke. Clinical EEG and neuroscience, 2007. 38(3): p. 155-160.
39. Burghaus, L., et al., Early electroencephalography in acute ischemic stroke: Prediction of a malignant course? Clinical neurology and neurosurgery, 2007. 109(1): p. 45-49.
40. Tecchio, F., et al., Outcome prediction in acute monohemispheric stroke via magnetoencephalography. Journal of neurology, 2007. 254(3): p. 296-305.
41. Leon-Carrion, J., et al., Delta–alpha ratio correlates with level of recovery after neurorehabilitation in patients with acquired brain injury. Clinical Neurophysiology, 2009. 120(6): p. 1039-1045.
42. Sheorajpanday, R.V., et al., Quantitative EEG in ischemic stroke: Correlation with functional status after 6months. Clinical Neurophysiology, 2011. 122(5): p. 874-883.
43. Sheorajpanday, R.V., et al., Quantitative EEG in ischemic stroke: correlation with infarct volume and functional status in posterior circulation and lacunar syndromes. Clinical Neurophysiology, 2011. 122(5): p. 884-890.
44. Friston, K.J., Functional and effective connectivity in neuroimaging: a synthesis. Human brain mapping, 1994. 2(1-2): p. 56-78.
45. Aertsen, A. and H. Preissl, Dynamics of activity and connectivity in physiological neuronal networks. Nonlinear dynamics and neuronal networks, 1991. 2: p. 281-301.
46. Chen, C., S.J. Kiebel, and K.J. Friston, Dynamic causal modelling of induced responses. Neuroimage, 2008. 41(4): p. 1293-1312.
47. Grefkes, C., et al., Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Annals of neurology, 2008. 63(2): p. 236-246.
48. Rehme, A.K., et al., The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cerebral cortex, 2010: p. bhq140.
49. Wang, L.E., et al., Noradrenergic enhancement improves motor network connectivity in stroke patients. Annals of neurology, 2011. 69(2): p. 375-388.
50. David, O., J.M. Kilner, and K.J. Friston, Mechanisms of evoked and induced responses in MEG/EEG. Neuroimage, 2006. 31(4): p. 1580-1591.
51. Chen, C.-C., et al., A dynamic causal model for evoked and induced responses. NeuroImage, 2012. 59(1): p. 340-348.
52. Derdikman, D., et al., Imaging spatiotemporal dynamics of surround inhibition in the barrels somatosensory cortex. The Journal of neuroscience, 2003. 23(8): p. 3100-3105.
53. Andrew, C. and G. Pfurtscheller, Event-related coherence as a tool for studying dynamic interaction of brain regions. Electroencephalography and clinical neurophysiology, 1996. 98(2): p. 144-148.
54. Chen, C.-C., et al., Nonlinear coupling in the human motor system. The Journal of Neuroscience, 2010. 30(25): p. 8393-8399.
55. 涂安廷, 應用腦電圖預測中風病人復健情況;Using EEG to predict the outcome of stroke rehabilitation 2014.
56. Talelli, P., et al., Theta Burst Stimulation in the Rehabilitation of the Upper Limb A Semirandomized, Placebo-Controlled Trial in Chronic Stroke Patients. Neurorehabilitation and neural repair, 2012. 26(8): p. 976-987.
57. 林宥辰, 基於虛擬實境復健之中風後運動網路功能性重組研究; Cerebral re-organization of motor networks in response to VR based rehabilitation after stroke. 2014.
58. Le Cessie, S. and J. Van Houwelingen, Ridge estimators in logistic regression. Applied statistics, 1992: p. 191-201.
59. Schölkopf, B., et al., New support vector algorithms. Neural computation, 2000. 12(5): p. 1207-1245.
60. Quinlan, J.R., C4. 5: programs for machine learning. Vol. 1. 1993: Morgan kaufmann.
61. Quinlan, J.R., Improved use of continuous attributes in C4. 5. arXiv preprint cs/9603103, 1996.
62. John, G.H. and P. Langley. Estimating continuous distributions in Bayesian classifiers. in Proceedings of the Eleventh conference on Uncertainty in artificial intelligence. 1995. Morgan Kaufmann Publishers Inc.
63. Lowe, D.G., Distinctive image features from scale-invariant keypoints. International journal of computer vision, 2004. 60(2): p. 91-110.
64. Mikolajczyk, K. and C. Schmid, A performance evaluation of local descriptors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2005. 27(10): p. 1615-1630.
65. Bay, H., T. Tuytelaars, and L. Van Gool, Surf: Speeded up robust features, in Computer Vision–ECCV 2006. 2006, Springer. p. 404-417.
66. Hall, M.A. and G. Holmes, Benchmarking attribute selection techniques for discrete class data mining. Knowledge and Data Engineering, IEEE Transactions on, 2003. 15(6): p. 1437-1447.
67. Kohavi, R. and G.H. John, Wrappers for feature subset selection. Artificial intelligence, 1997. 97(1): p. 273-324.
68. Cuspineda, E., et al., QEEG prognostic value in acute stroke. Clin EEG Neurosci, 2007. 38(3): p. 155-60.
69. Talelli, P., et al., Theta burst stimulation in the rehabilitation of the upper limb: a semirandomized, placebo-controlled trial in chronic stroke patients. Neurorehabil Neural Repair, 2012. 26(8): p. 976-87.
70. Restel, M., et al., Midbrain and bilateral paramedian thalamic stroke due to artery of Percheron occlusion. Neurol Neurochir Pol, 2016. 50(3): p. 180-4.
71. 呂億綸, 運用腦電波研究中風病人的復健成效與持續情形;Using EEG to evaluate the stroke rehabilitation efficacy : a longitudinal study. 2015.
72. Gola, M., et al., EEG beta band activity is related to attention and attentional deficits in the visual performance of elderly subjects. Int J Psychophysiol, 2013. 89(3): p. 334-41.
指導教授 陳純娟(Chun-Chuan Chen) 審核日期 2016-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明