博碩士論文 103827017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:54.159.85.193
姓名 賴家緯(Chia-Wei Lai)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 研究探討層流剪應力對泌尿上皮細胞癌於細胞週期運作之影響與機轉
(Investigation of the Effect of Laminar Shear Stress on Mitotic Cell Cycle of Human Urothelial Carcinoma)
相關論文
★ 研究探討層流剪應力於高糖環境下對膀胱癌細胞遷移與侵襲行為之影響★ 設計並建構一全氟碳光生物反應器組用於分離混合氣體中之二氧化碳並同時提升微藻養殖及其經濟產物生成之效能
★ Synthesis, Spectral Characterization and Evaluation of Quercetin-Zinc Complex for Tumoricidal and Anti-metastasis of Human Bladder Cancer Cell★ 包覆靛氰綠與喜樹鹼之標靶全氟碳奈米乳劑 研製於強化乳癌螢光擴散光學影像暨 光/化學治療之研究
★ 可動態改變外翻力矩的治療退化性膝關節炎輔具★ 聚乙二醇對於擬球藻生長與脂質堆積之影響
★ 製備包覆靛氰綠及阿黴素之聚乳酸甘醇酸-聚乙二醇交聯標靶奈米粒子用於乳癌光/化學治療之研究★ 研製包覆靛氰綠與阿黴素之標靶氟化奈米乳劑用於乳癌光/化學治療之研究
★ 研究設計全氟碳化物光生物反應器系統用以純化沼氣並藉此提升微藻生物質及生質能源之產量★ 利用PLGA微球載體結合超聲波駐波場以提高巨噬細胞藥物輸送之效率
★ 以血流動力系統探討血管內皮細胞在尼古丁刺激下對層流剪應力之型態異常與自體凋亡之表現變化★ 以板式流道系統模擬血管內皮細胞於層流剪力影響下受尼古丁刺激產生發炎反應之研究
★ 結合超聲波駐波場與層堆疊自體組裝微球載體建構提高分子傳遞至細胞內效率之方法★ 製備包覆靛氰綠之聚乳酸甘醇酸標靶奈米粒子用於乳癌光熱暨光動治療之研究
★ 建構駐波聲場光生物反應器系統用於提升密閉式微藻養殖效能之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 惡性腫瘤的產生由細胞不正常分裂累積所導致,過去對於各種癌症研究中皆可發現其細胞內部中的細胞週期素、細胞週期依賴性激酶表現異常,或是細胞週期素依賴性激酶抑制物及腫瘤抑制因子的缺失。種種證據皆指向細胞週期的異常在於細胞失去調控上述相關蛋白質的功能,使細胞能不斷生長、複製、分裂進而導致惡性腫瘤的產生。在泌尿系統中,各器官之內層主要由泌尿上皮(或稱移行上皮)所構成,因此在病理機制上各器官極為相似。泌尿上皮癌細胞在體內會受到層流剪應力的刺激,此應力來自組織間隙流、血管血液流等,且強度大小不一,於本實驗使用之層流剪應力強度範圍為2~12dyne/cm2,而比其他器官特殊在於輸尿管中尿液的流動,其強度約為3~5dynes/cm2。本研究藉由平行板式流動系統產生層流剪應力來刺激泌尿上皮癌細胞,並透過西方點墨法、影像式細胞分析儀及細胞生長率實驗得知,在相對弱之層流剪應力(2、4 dyne/cm2)下,細胞對於外界變化無太大反應;而相對強之層流剪應力(8、12 dyne/cm2)沖刷下,在刺激第8小時開始,原本停留在G1期的細胞減少,同時進入S期的細胞增加,當刺激時間拉長到12小時,轉向進入G2/M期累積。為了瞭解G2/M顯著上升的原因,我們以四種層流剪應力強度分別刺激12小時去分析各時期相關蛋白質的表現,並發現調控G1期的Cyclin D/CDK4/CDK6、G1/S期的Cyclin E/CDK2、S/G2的Cyclin A/CDK2及G2前期的Cyclin A/CDK1隨強度上升表現量降低,而調控G2晚期和M期的Cyclin B卻隨著強度上升表現量顯著提高,而調控CDK1磷酸化的wee1、CDK1於Tyr15磷酸化、p21的表現量都與Cyclin B趨勢相似,證明Cyclin B與CDK1的結合受到阻擋,而使細胞無法順利由G2晚期推向M期導致細胞停滯在G2/M期。另外,從細胞生長率實驗中同樣發現相似的結果,在刺激12小時細胞數隨著強度上升而減少,並且在連續培養6天內細胞數都顯著低於靜態控制組。為了進一步探討細胞內訊息傳遞的路徑,我們根據文獻鎖定p21上游的SMAD家族並藉由西方點墨法分析,在刺激12小時後smad1/5磷酸化表現量隨著強度上升顯著增加而smad2/3磷酸化則無明顯變化,說明以smad1/5做為傳遞路徑的BMP受器被開啟。最後,為了進一步做驗證,我們加入BMP路徑的抑制劑dorsomorphin後再以相同條件刺激,結果發現smad1/5磷酸化及其下游p21包含細胞週期相關蛋白質表現量之趨勢皆有平緩的現象,說明層流剪應力的效果可能被阻隔。由以上證據說明層流剪應力很可能間接或直接活化BMP受器,開啟smad路徑使p21表現進而去影響細胞週期停滯。
摘要(英) Mechanical microenvironment plays important roles in cell development, maintenance, and in cellular responses and functions. Laminar shear stress is one of important mechanical force in human body especially at tumor. Because according to tumor size, LSS intensity is also different. In urinary system, LSS is generated by blood flow, Interstitial fluid flow or lymph flow to stimulated urothelial. In this study, human bladder cancer cells; BFTC-905 cells were treated with 2, 4, 8, and 12 dynes/cm2 LSS separately where each one was sheared for 1, 4, 8, and 12 h, respectively, and then subjected to cell cycle analysis by using both cellular and molecular assays. The image cytometric result shows that LSS with intensity of ≥ 8 dynes/cm2 enabled to induce G2/M arrest that the percentages of cells in G2/M significantly increased 2.2 folds and 2.4 folds after sheared with 8 and12 dynes/cm2, respectively, for 12 h. The growth rate of cells treated with 12 dynes/cm2 for 12 h remarkably reduced 0.8 fold as compared to the group without LSS in day 6. In addition, we found that the protein expression levels of Cyclin B1, p-CDK1(Y15), wee1 and p21 up regulated while CDK1, CDK2, CDK4, CDK6, Cyclin A2, Cyclin D1, Cyclin E1 down regulated along with increase of LSS intensity, demonstrating that the LSS-induced cell cycle arrest was occurred at G2/M phase. Moreover, we investigated Smad family to clear related pathway between LSS and BFTC-905, and we found the protein expression levels of p-smad1/5 and smad4 up regulated while smad1, smad2/3, p-smad3 no significant change. It means BFTC-905 will transmit LSS signal by BMP pathway. These results showed that the LSS may turn on BMP signal pathway and inhibit the proliferation of urothelial carcinoma growing in urinary system.
關鍵字(中) ★ 層流剪應力
★ 細胞週期停滯
★ 泌尿上皮癌細胞
★ BMP訊息傳遞路徑
★ 機械微環境
關鍵字(英) ★ Laminar Shear Stress
★ urothelial carcinoma
★ cell cycle arrest
★ BMP signal pathway
★ mechanical microenvironment
論文目次 致謝 IV
摘要 V
Abstract VII
目錄 IX
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 泌尿系統與癌症 4
2.1.1 發生率統計 4
2.1.2 泌尿道上皮癌致病因素 6
2.2 細胞週期 6
2.2.1 循環過程 7
2.2.2 調控機制 10
2.3 機械力刺激對細胞之影響 17
2.3.1 層流剪應力 18
2.3.1 血管內之層流剪應力 18
2.3.2 組織間隙流之層流剪應力 19
2.3.3 輸尿管內之層流剪應力 21
第三章 材料與實驗方法 22
3.1 實驗藥品與儀器 22
3.1.1 細胞培養 22
3.1.2 西方點墨法試劑 23
3.1.3 儀器設備 25
3.2 平行板式流動系統(Parallel-plate flow system) 27
3.3 實驗方法 31
3.3.1 細胞繼代、保存與解凍 31
3.3.2 實驗之玻片準備 33
3.3.3 Two-step cell cycle分析 33
3.3.4 蛋白質定量分析 34
3.3.5 膠體電泳(SDS-PAGE) 36
3.3.6 西方點墨法(Western Blot) 38
3.4 實驗設計 42
第四章 結果與討論 45
4.1 層流剪應力對細胞週期分佈之影響 45
4.1.1 層流剪應力強度變化與細胞週期 45
4.1.2 沖刷時間變化與細胞週期 47
4.2 層流剪應力對相關週期蛋白質表現之影響 50
4.2.1 調控細胞週期-G1期之蛋白質表現變化 50
4.2.2 調控細胞週期-G1/S轉換之蛋白質表現變化 51
4.2.3 調控細胞週期-S/G2轉換之蛋白質表現變化 52
4.2.4 調控細胞週期-G2與G2/M轉換之蛋白質表現變化 53
4.2.5 調控細胞週期-p21與Wee1蛋白質表現變化 55
4.3 層流剪應力對泌尿上皮癌細胞生長之影響 57
4.4 層流剪應力對泌尿上皮癌細胞週期影響之機轉 61
4.4.1 層流剪應力刺激對SMAD家族之影響 61
4.4.2 層流剪應力刺激下抑制劑對細胞週期之影響 63
第五章 結論 69
第六章 未來展望 72
參考文獻 74
附錄 84
參考文獻

1. 李經家,台灣的另一種國病-上泌尿道上皮癌(腎盂癌或輸尿管癌). 高醫醫訊月刊, 2015;34(10): P.16
2. Grayton JE, Miller T, Wilson-Robles H., In vitro evaluation of Selective Inhibitors of Nuclear Export (SINE) drugs KPT-185 and KPT-335 against canine mammary carcinoma and transitional cell carcinoma tumor initiating cells. Vet Comp Oncol, 2017; doi:10.1111/vco.12289.
3. Marvel SJ, Séguin B, Dailey DD, Thamm DH. Clinical outcome of partial cystectomy for transitional cell carcinoma of the canine bladder. Vet Comp Oncol, 2017; doi: 10.1111/vco.12286.
4. Harb OA, Haggag R, Ali MM, El Shorbagy S, Abdelbary AM, Abdelaziz LA, Salim RA, Abdel Wahab KM. The Prognostic Role of NEDD9 and P38 Protein Expression Levels in Urinary Bladder Transitional Cell Carcinoma. J Oncol, 2017;2017:6095205.
5. Jørgensen KR, Høyer S, Sørensen MM, Jensen JB. Human papillomavirus types 44, 52, 66 and 67 detected in a woman with squamous cell carcinoma of the urinary bladder. ScandJ Urol, 2017; 51(1):85-86.
6. Liu Y, Bui MM, Xu B. Urothelial Carcinoma with squamous differentiation is associated with high tumor stage and pelvic lymph-node metastasis. Cancer Control, 2017; 24(1):78-82.
7. Kim TH, Kim SY, Moon KC, Lee J, Cho JY, Kim SH. Clear Cell Adenocarcinoma of the Urethra in Women: Distinctive MRI Findings for Differentiation From Nonadenocarcinoma and Non-Clear Cell Adenocarcinoma of the Urethra. AJR Am J Roentgenol, 2017;31:1-7.
8. Surveillance, Epidemiology, and End Results Program (SEER), https://seer.cancer.gov/
9. Taiwan Cancer Registry (TCR), http://tcr.cph.ntu.edu.tw/main.php?
Page=A1
10. Colin P, Koenig P, Ouzzane A, Berthon N, Villers A, Biserte J, Rouprêt M. Environmental factors involved in carcinogenesis of urothelial cell carcinomas of the upper urinary tract. BJU Int, 2009; 104(10):1436-40.
11. Raman JD and Scherr DS. Management of patients with upper urinary tract transitional cell carcinoma. Nat Clin Pract Urol, 2007;4(8):432-43.
12. Antoni S, Soerjomataram I, Moore S, Ferlay J, Sitas F, Smith DP, Forman D. The ban on phenacetin is associated with changes in the incidence trends of upper-urinary tract cancers in Australia. Aust N Z J Public Health, 2014;38(5):455-8.
13. Yehong Han, Dawei Shou, Liang Wen, Jianguang Shi, Jian Ding, Ping Gong, Weihua Gong. Interplay between chronic kidney disease (CKD) and upper tract urothelial carcinomas (UUC): foe or friend. Published online, 2016;7(33): 53951–53958.
14. Saint-Jacques N, Parker L, Brown P, Dummer TJ. Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence. Environmental Health, 2014;13:44.
15. Yang MH, Chen KK, Yen CC, Wang WS, Chang YH, Huang WJ, Fan FS, Chiou TJ, Liu JH, Chen PM. Unusually high incidence of upper urinary tract urothelial carcinoma in Taiwan. Urology, 2002;59(5):681-7.
16. Chiang PH, Huang MS, Tsai CJ, Tsai EM, Huang CH, Chiang CP. Transitional cell carcinoma of the renal pelvis and ureter in Taiwan. DNA analysis by flow cytometry. Cancer, 1993;71(12):3988-92.
17. Hong YT, Fu LS, Chung LH, Hung SC, Huang YT, Chi CS. Fanconi′s syndrome, interstitial fibrosis and renal failure by aristolochic acid in Chinese herbs. Pediatr Nephrol, 2006;21(4):577-9.
18. Yang HY, Chen PC, Wang JD. Chinese Herbs Containing Aristolochic Acid Associated with Renal Failure and Urothelial Carcinoma: A Review from Epidemiologic Observations to Causal Inference. BioMed Research International, 2014; 2014:569325.
19. Wu F and Wang T. Risk assessment of upper tract urothelial carcinoma related to aristolochic acid. Cancer Epidemiol Biomarkers Prev, 2013;22(5):812-20.
20. Chen CH, Dickman KG, Huang CY, Moriya M, Shun CT, Tai HC, Huang KH, Wang SM, Lee YJ, Grollman AP, Pu YS. Aristolochic acid-induced upper tract urothelial carcinoma in Taiwan: clinical characteristics and outcomes.Int J Cancer, 2013;133(1):14-20.
21. Cooper GM. The Eukaryotic Cell Cycle. The cell: a molecular approach (2nd ), 2000;Chapter 14.
22. Wang JD and Levin PA. Metabolism, cell growth and the bacterial cell cycle. Nature Reviews Microbiology, 2009;7 (11): 822–7.
23. 崔中和, 劉喜忠, 丁明孝, 細胞生物學(第三版), 2007;388-389.
24. Harvey L, Arnold B, Chris AK, Monty K, Matthew PS, Anthony B, Hidde P, Paul M. Molecular Cell Biology 6th ed, 2008.
25. 吳相鈺, 陳守良, 葛明德. 陳閱增, 普通生物學(第2版), 2009.
26. Morgan D. The Cell Cycle: Principles of Cell Control. New Science Press, 2007;58–60.
27. Anthea M, David L, Jean H, Maryanna QW, Susan J, Jill DW. Cells: Building Blocks of Life. Prentice Hall, 1997;70–4.
28. Yang K, Shrestha S, Zeng H, Karmaus PW, Neale G, Vogel P, Guertin DA, Lamb RF, Chi H. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic programming. Immunity, 2013;39(6):1043-56.
29. Marx SO, Jayaraman T, Go LO, Marks AR. Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells.Circ Res, 1995;76(3):412-7.
30. Hall PA and Watt FM. Stem cells: the generation and maintenance of cellular diversity. Development, 1989;106:619-633.
31. Williams GH and Stoeber K. Cell cycle markers in clinical oncology. Curr Opin Cell Biol, 2007;19: 672-679.
32. Pardee A. G1 events and regulation of cell proliferation. Science, 1989;246 (4930):603–8.
33. Cuddihy AR and O′Connell MJ. Cell-cycle responses to DNA damage in G2. International review of cytology, 2003;222: 99–140.
34. Cimini D, Wan X, Hirel CB, Salmon ED. Aurora Kinase Promotes Turnover of Kinetochore Microtubules to Reduce Chromosome Segregation Errors. Current Biology, 2006;16(17): 1711–8.
35. Burke DJ and Stukenberg PT. Linking kinetochore-microtubule binding to the spindle checkpoint. Developmental Cell, 2008;14 (4): 474–9.
36. Shiff SJ, Qiao L, Tsai LL, Rigas B. Sulindac sulfide, an aspirin-like compound, inhibits proliferation, causes cell cycle quiescence, and induces apoptosis in HT-29 colon adenocarcinoma cells. J Clin Invest, 1995;96(1):491-503.
37. cell cycle, http://grivina.com/diagram/diagram-of-the-cell-cycle/
38. Morgan D. Controlling the Cell Cycle: Introduction, 2007.
39. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Evans T Cell, 1983;33(2):389-96.
40. Cyclin Expression, https://zh.wikipedia.org/wiki/File:Cyclin_
Expression.svg
41. Galderisi U, Jori FP, Giordano A. Cell cycle regulation and neural differentiation. Oncogene, 2003;22 (33): 5208–19.
42. Morgan D. The Cell Cycle: Principles of Control. New Science Press, 2007;80(3):141–142.
43. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of Cyclin D/CDK4. Nature, 1993;366(6456):704-7.
44. Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA. Regulation of retinoblastoma protein functions by ectopic expression of human Cyclins. Cell, 1992; 70: 993-1006.
45. Coverley D, Laman H, Laskey RA. Distinct roles for Cyclins E and A during DNA replication complex assembly and activation. Nat Cell Biol, 2002;4(7):523–8.
46. Woo RA and Poon RY, Cyclin-dependent kinases and S phase control in mammalian cells. Cell Cycle, 2003;2 (4): 316–24.
47. Yam CH, Fung TK, Poon RY. Cyclin A in cell cycle control and cancer. Cell Mol Life Sci, 2002;59 (8): 1317–26.
48. Bruce A, Dennis B, Julian L, Martin R, Keith R, James DW, Nigel O, Kaye HM. Molecular Biology of the Cell. Garland Science 3rd Ed, 1994.
49. Liskay RM. Absence of a measurable G2 phase in two Chinese hamster cell lines. PNAS, 1977;74(4):1622–1625.
50. Smith LD and Ecker RE. The interaction of steroids with Rana pipiens oocytes in the induction of maturation. Developmental Biology, 1971;25(2): 232–247.
51. Masui Y and Markert CL. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. Journal of Experimental Zoology, 1971;177 (2): 129–145.
52. Al-Khodairy F and Carr AM. DNA repair mutants defining G2 checkpoint pathways in Schizosaccharomyces pombe. The EMBO Journal, 1992;11(4):1343–1350.
53. Raleigh JM and O′Connell MJ. The G2 DNA damage checkpoint targets both Wee1 and Cdc25. Journal of Cell Science, 2000;113(10):1727–1736.
54. Kateřina Bišová, Molecular Mechanisms of Cell Cycleregulation, http://www.alga.cz/en/a-85-molecular-mechanisms-of-cell-cycle-regulation-.html
55. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell, 1993;75 (4):817–25.
56. Meng AG and Jiang LL. Induction of G2/M arrest by pseudolaric acid B is mediated by activation of the ATM signaling pathway. Acta Pharmacol Sin, 2009;30(4):442-50
57. Wrana JL. Crossing Smads. Sci STKE, 2000;2000(23): RE1.
58. Derynck R, Zhang Y, Feng XH. Smads: Transcriptional Activators of TGF-β Responses. Cell, 1998;95(6):737–740.
59. Nishimura R, Hata K, Ikeda F, Matsubara T, Yamashita K, Ichida F, Yoneda T. The role of Smads in BMP signaling. Front Biosci, 2003;8:s275-84.
60. Xie F, Zhang Z, van Dam H, Zhang L, Zhou F. Regulation of TGF-β Superfamily Signaling by SMAD Mono-Ubiquitination. Cells, 2014;3(4):981-93.
61. Bhowmick NA1, Ghiassi M, Aakre M, Brown K, Singh V, Moses HL. TGF-beta-induced RhoA and p160ROCK activation is involved in the inhibition of Cdc25A with resultant cell-cycle arrest. Proc Natl Acad Sci U S A, 2003;100(26):15548-1553.
62. Mitsui Y, Hirata H, Arichi N, Hiraki M, Yasumoto H, Chang I, Fukuhara S, Yamamura S, Shahryari V, Deng G, Saini S, Majid S, Dahiya R, Tanaka Y, Shiina H. Inactivation of bone morphogenetic protein 2 may predict clinical outcome and poor overall survival for renal cell carcinoma through epigenetic pathways. Oncotarget, 2015;6(11):9577-91.
63. Chen CS, Tan J, Tien J. Mechanotransduction at cell-matrix and cell-cell contacts. Annu Rev Biomed Eng, 2004;6:275-302.
64. Nagelkerke A, Bussink J, Rowan AE, Span PN. The mechanical microenvironment in cancer: How physics affects tumours.Semin Cancer Biol, 2015;35:62-70.
65. Pavlin D and Gluhak-Heinrich J, Effect of mechanical loading on periodontal cells. Crit Rev Oral Biol Med, 2001;12(5):414-24.
66. Sluysmans S, Vasileva E, Spadaro D, Shah J, Rouaud F, Citi S. The role of apical cell-cell junctions and associated cytoskeleton in mechanotransduction. Biol Cell, 2017;109(4):139-161.
67. Paolo PP and Keely PJ. Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci, 2011;124(Pt 8):1195-205.
68. Stavenschi E, Labour MN, Hoey DA. Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: The effect of shear stress magnitude, frequency, and duration. J Biomech, 2017;(17)30097.
69. Xu T, Xu G, Gu Z, Wu H. Role of endoplasmic reticulum stress pathway in hydrostatic pressure-induced apoptosis in rat mandibular condylar chondrocytes. Mol Cell Biochem, 2017;429(1-2):23-31.
70. Koga T, Shiraki N, Yano S, Suico MA, Morino-Koga S, Sato T, Shuto T, Kume S, Kai H. Mild electrical stimulation with heat shock guides differentiation of embryonic stem cells into Pdx1-expressing cells within the definitive endoderm. BMC Biotechnol, 2017;17(1):14.
71. Liu Y, Yang G, Ji H, Xiang T, Luo E, Zhou S. Synergetic effect of topological cue and periodic mechanical tension-stress on osteogenic differentiation of rat bone mesenchymal stem cells. Colloids Surf B Biointerfaces, 2017;154:1-9.
72. Lien SC, Chang SF, Lee PL, Wei SY, Chang MD, Chang JY, Chiu JJ. Mechanical regulation of cancer cell apoptosis and autophagy: Roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK. Biochim Biophys Acta, 2013;1833(12):3124-33.
73. Lipowsky HH, Kovalcheck S, Zweifach BW. The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circ Res, 1978;43:738 –749.
74. Remuzzi A, Brenner BM, Pata V, Tebaldi G, Mariano R, Belloro A, Remuzzi G. Three-dimensional reconstructed glomerular capillary network: Blood flow distribution and local filtration. Am J Physiol, 1992;263:F562–F572.
75. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis: Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res,1983;53:502–514.
76. Gromov P, Gromova I, Olsen CJ, Timmermans-Wielenga V, Talman ML, Serizawa RR, Moreira JM. Tumor interstitial fluid – a treasure trove of cancer biomarkers. Biochim Biophys Acta, 2013;1834(11): 2259–2270.
77. Boucher Y, Baxter LT, Jain RK. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res, 1990;50(15):4478–4484.
78. Lee I, Boucher Y, Demhartner TJ, Jain RK. Changes in tumour blood flow, oxygenation and interstitial fluid pressure induced by pentoxifylline. Br J Cancer, 1994;69(3):492–496.
79. Chang SF, Chang CA, Lee DY, Lee PL, Yeh YM, Yeh CR, Cheng CK, Chien S, Chiu JJ. Tumor cell cycle arrest induced by shear stress: Roles of integrins and Smad. Proc Natl Acad Sci U S A, 2008;105(10):3927-3932.
80. Vahidi B, Fatouraee N, Imanparast A, Moghadam AN. A mathematical simulation of the ureter: effects of the model parameters on ureteral pressure/flow relations. J Biomech Eng, 2011;133(3):031004.
81. Rinker KD, Prabhakar V, Truskey GA. Effect of Contact Time and Force on Monocyte Adhesion to Vascular Endothelium. Biophys J, 2001;80(4):1722-32.
82. Yu PB, Hong CC, Sachidanandan C, Babitt JL, Deng DY, Hoyng SA, Lin HY, Bloch KD, Peterson RT. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol, 2008;4(1):33-41.
指導教授 李宇翔(Yu-Hsiang Lee) 審核日期 2017-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明