博碩士論文 103881001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.147.66.193
姓名 許至緯(Jhih-Wei Hsu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 鄰苯二甲酸二(2-乙基己基)酯暴露誘發小鼠代謝性功能異常之探討
(Effects of di‑(2‑ethylhexyl) phthalate exposure on metabolic disorders in mice)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 研究證據顯示,鄰苯二甲酸酯暴露與代謝異常之間存在正相關,顯示鄰苯二甲酸酯可能具內分泌干擾活性,進而導致代謝異常;另一方面,鄰苯二甲酸二(2-乙基己基)酯(DEHP)的主要代謝物單乙基己基酯(MEHP),已被證實具有過氧化物酶體增殖物活化受體γ促進劑(PPARγ agonist)的活性,PPARγ可有效地誘發白色脂肪細胞褐化(browning);本研究初步結果顯示,脂肪細胞經MEHP處理後,呈現細胞能量代謝活性增高及脂肪細胞褐化的特徵;由於白色脂肪組織的褐化可增加能量消耗並抑制肥胖形成,通常被認為具有改善代謝異常的作用。考慮到肥胖同時也是導致代謝異常的主要危險因子,本研究旨在探討DEHP暴露誘發代謝異常之與否,是否與個體之肥胖程度有關;正常小鼠(C57BL/6J)和飲食誘發的肥胖小鼠,經由管餵的方式接受DEHP,劑量為0.1和1.0 毫克/公斤體重/天,持續25週。結果顯示,正常小鼠經DEHP處理後,白色脂肪組織內的褐化標記基因 (Adrb1、Adrb3、Pparg、Ppargc1a、Ucp1)表現上升,血液中FGF21濃度升高,棕色脂肪組織重量增加;微陣列分析顯示,DEHP引發之白色脂肪組織轉錄組的變化,與碳水化合物吸收、白色和棕色脂肪組織數量、及脂肪形成有關;其間,上游調控因子Pparg和Nr4a1參與主要的白色脂肪組織轉錄組調控,這些證據支持DEHP處理在正常小鼠能夠誘發白色脂肪組織褐化。另一方面,肥胖小鼠經DEHP處理後,呈現較高的葡萄糖耐受不良(glucose intolerance)及胰島素阻抗(insulin resistance),伴隨著血液中瘦素(leptin)、低密度脂蛋白(LDL)、丙氨酸轉氨酶(ALT)的顯著增加,同時觀察到白色脂肪組織及肝臟內巨噬細胞浸潤(macrophage infiltration) 的增加,及脂肪肝(hepatic steatosis)、脂肪性肝炎(steatohepatitis)進一步惡化。值得注意的是,這些DEHP對胖鼠造成的代謝異常,並未在正常小鼠被觀察到。以微陣列分析白色脂肪組織和肝臟內轉錄組變化;對於白色脂肪組織,肥胖和DEHP經由上游調控因子(Pparg、Lipe、Cd44、Irs1),協同調控碳水化合物的攝取、脂解和脂肪組織的異常;對於肝臟組織,肥胖和DEHP則影響參與不同功能轉錄組的變化,肥胖會影響脂質及膽固醇合成、脂質累積、及發炎反應;對於肥胖小鼠,DEHP則會進一步影響參與誘發肝臟損傷、細胞遷移、和肝糖量調控的相關基因表現。這些微陣列分析結果,對於DEHP在肥胖小鼠誘發之代謝異常,提供可能的作用機轉,這些證據顯示DEHP處理對肥胖小鼠具內分泌干擾活性,進而導致早發性代謝異常。
摘要(英) Accumulating evidence has revealed the positive association between phthalate exposure and metabolic disorders, highlighting the endocrine-disrupting activity of phthalates. However, the major di‑(2‑ethylhexyl) phthalate (DEHP) metabolite MEHP has been identified as a selective PPARγ agonist. PPARγ has been reported as a potent adipocyte browning factor. Our preliminary results also demonstrated that MEHP-treated adipocytes exhibited an increased energy metabolic activity and brown adipocyte-like characteristics in vitro. By decreasing adiposity and increasing energy expenditure, the browning of white adipose tissue (WAT) is generally considered with beneficial effects on improving metabolic disorders. Considering obesity is the major risk factor for metabolic disorders, the present study aimed to investigate whether DEHP exposure caused metabolic disorders in an obesity-dependent manner. Both normal and diet-induced obese C57BL/6J mice were subjected to environmentally relevant levels of DEHP (i.e., 0.1 and 1.0 mg/kg body weight/day) by gavage for 25 weeks. DEHP-treated normal mice exhibited actively expressed browning marker genes (i.e., Pparg, Adrb1, Adrb3, Ppargc1a, and Ucp1) in WAT, increased blood FGF21 levels, and higher amounts of BAT. Meanwhile, transcriptional changes in WAT were associated with carbohydrate uptake, WAT/brown adipose tissue (BAT) quantity, and adipogenesis. Pparg and Nr4a1 were predicted as the top two upstream regulators in orchestrating transcriptional changes in WAT of DEHP-treated normal mice. The results support the browning activity of DEHP in normal mice. On the other hand, DEHP-treated obese mice exhibited higher glucose intolerance and insulin resistance than obese mice; the metabolic disorders were accompanied by increased blood levels of leptin, low-density lipoprotein (LDL), and alanine transaminase (ALT). Meanwhile, DEHP enhanced macrophage infiltration into WAT and hepatic tissue, and promoted hepatic steatosis/steatohepatitis in obese mice. Notably, the DEHP effects in obese mice were not observed in normal mice. Microarray analysis was used to determine transcriptomic changes in WAT and hepatic tissue. Results indicated that obesity and DEHP synergistically regulated carbohydrate uptake, lipolysis, and abnormality of adipose tissue, via the upstream regulators Pparg, Lipe, Cd44, and Irs1. Meanwhile, obesity and DEHP differentially modulated transcriptomic changes in hepatic tissue. Obesity was associated with lipid/cholesterol synthesis, lipid accumulation, and inflammation in hepatic tissue. In obese mice, DEHP exposure caused hepatic injury, cell migration, and changes in glycogen quantity. Microarray analysis suggested the potential mechanism underlying the early onset of metabolic disorders in DEHP-treated obese mice, supporting the endocrine-disrupting activity of DEHP in obese mice.
關鍵字(中) ★ 能量代謝
★ 肥胖
★ 胰島素阻抗
★ 葡萄糖耐受不良
★ 白色脂肪褐化
★ 脂肪肝
★ 脂肪性肝炎
★ 巨噬細胞浸潤
關鍵字(英) ★ Energy metabolism
★ Obesity
★ Insulin resistance
★ Glucose intolerance
★ White adipose tissue browning
★ Hepatic steatosis
★ Steatohepatitis
★ Macrophage infiltration
論文目次 Table of Contents
Chinese Abstract ⅰ
English Abstract ⅲ
Acknowledgments ⅴ
Table of Contents ⅵ
List of Figures ⅺ
List of Tables xiii
Abbreviations xiv
CHAPTER Ⅰ. INTRODUCTION
1.1. Metabolic disorders 1
1.1.1. Causes of metabolic disorders 1
1.1.2. Akt in insulin signals 1
1.1.3. Insulin resistance and hyperinsulinemia 1
1.1.4. NAFLD 2
1.2. Phthalates: from the environment to the human body 5
1.2.1. Physico-chemical properties of phthalates and their application 5
1.2.2. Distribution of phthalates in the environment 5
1.2.3. Routes of phthalate exposure 6
1.2.4. Metabolism of phthalates 6
1.2.5. Biomonitoring of phthalate exposures 6
1.3. Phthalate exposure on metabolic disorders 8
1.3.1. Epidemiological studies 8
1.3.2. Animal studies 9
1.3.3. In vitro studies 10
CHAPTER Ⅱ. PRELIMINARY TESTS, HYPOTHESIS, AND SPECIFIC AIMS
2.1. Browning-like effects of MEHP on adipocytes in vitro 12
2.1.1. MEHP-treated adipocytes secrete increased amounts of FGF21 12
2.1.2. Expression of Fgfr family and βKlotho genes in adipocytes 13
2.1.3. FGF21/FGFR plays critical roles in adipocyte glucose uptake 13
2.1.4. MEHP-treated adipocytes exhibit brown adipocyte-like characteristics 14
2.1.5. MEHP-treated adipocytes exhibit an increased energy metabolic activity 15
2.1.6. PDK4 and PEPCK1 in glucose utilization for mitochondrial mitochondrial respiration 16
2.1.7. Increased mitochondrial and peroxisomal biogenesis in MEHP-treated adipocytes 17
2.1.8. Increased fatty acid β-oxidation in MEHP-treated adipocytes 18
2.1.9. MEHP causes browning-like effects on adipocytes 19
2.2. Hypothesis 19
2.3. Objective and approach strategies 20
CHAPTER Ⅲ. MATERIAL AND METHODS
3.1. Chemicals, mice and cells 21
3.2. ELISA kits 22
3.3. Colorimetric assays kits 22
3.4. Induction of adipogenesis and MEHP treatments 22
3.5. Glucose uptake assay 23
3.6. Measurement of energy metabolism activity 23
3.7. Microarray analysis of transcriptional changes in MEHP/RSG-treated adipocytes 24
3.8. Immunoblot analysis 25
3.9. Analysis of size distribution of lipid droplets in adipocytes 25
3.10. NF-κB luciferase reporter assay 26
3.11. Measurement of mitochondrial biogenesis 26
3.12. Measurement of peroxisomal biogenesis 27
3.13. Measurement of fatty acid β-oxidation 27
3.14. Experimental design of animal studies 28
3.15. Methods of metabolic function evaluations in the animal system 29
3.15.1. Evaluation of glucose clearance capacity 29
3.15.2. Evaluation of insulin sensitivity 29
3.16. Quantification of DEHP metabolites in urine 30
3.16.1 Urine samples preparation 30
3.16.2. LC-MS/MS analysis 30
3.17. Measurement of fat volume in mice 31
3.18. Measurement of glucose homeostasis related parameters in circulating levels of mice 31
3.19. Measurement of adipokine profile in circulating levels of mice 31
3.20. Measurement of total cholesterol, HDL, LDL, and triglycerides 32
3.21. Measurement of ALT and AST levels in mouse blood 32
3.22. Histology and staining 32
3.23. Microarray analysis of transcriptional changes in eWAT and hepatic tissue of mice 33
3.24. RNA isolation and qPCR analysis 33
3.25. Statistical analysis 34
CHAPTER Ⅳ. RESULTS
4.1. DEHP causes significant increases in both body weight of obese mice and BAT of normal mice 35
4.2. Effects of DEHP on cell size of adipocytes in mice 36
4.3. DEHP impairs glucose clearance capacity and insulin sensitivity in obese mice 36
4.4. Changes in adipokine levels in mice in response to obese and DEHP 37
4.5. DEHP enhances macrophage infiltration into eWAT in obese mice 38
4.6. DEHP causes significant increases in blood LDL and hepatic cholesterol/triglyceride accumulation in obese mice 39
4.7. DEHP aggravates steatohepatitis in obese mice 39
4.8. MEHP is the major DEHP metabolite in mice urine 40
4.9. Descriptive statistics of microarray data from eWAT and hepatic tissue 41
4.10. IPA analysis of transcriptional changes in eWAT 42
4.11. Synergistic effects of obesity and DEHP on transcriptional changes in eWAT 44
4.12. DEHP causes eWAT browning in normal mice, but not in obese mice 45
4.13. IPA analysis of transcriptional changes in hepatic tissue 45
4.14. DEHP causes metabolic disorders in an obesity dependent manner 47
CHAPTER Ⅴ. DISCUSSION
5.1. Browning effects of MEHP on 3T3-L1 adipocytes in vitro 49
5.2. Browning effects of DEHP on eWAT in normal mice in vivo 50
5.3. Endocrine-disrupting effects of DEHP on obese mice 51
5.4. Leptin resistance in DEHP-treated obese mice 52
5.5. Effects of obesity and DEHP on inflammation in eWAT 52
5.6. Synergistic effects of obesity and DEHP on transcriptional changes in eWAT 53
5.7. NAFLD in DEHP-treated obese mice 54
5.8. Differential roles of obesity and DEHP in promoting hepatic steatosis and steatohepatitis 55
5.8.1. Obesity associated DEGs in hepatic lipid metabolism and inflammation 55
5.8.2. DEHP-induced DEGs in hepatic inflammation 56
CHAPTER Ⅵ. CONCLUSION 58
References 59
Figures and Figure legends 80
Tables 132
Appendix 146
Publications 182
參考文獻 Albert, J.S., Yerges-Armstrong, L.M., Horenstein, R.B., Pollin, T.I., Sreenivasan, U.T., Chai, S., Blaner, W.S., Snitker, S., O′Connell, J.R., Gong, D.W., et al. (2014). Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes. N Engl J Med 370, 2307-2315.
Andrikopoulos, S., Blair, A.R., Deluca, N., Fam, B.C., and Proietto, J. (2008). Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab 295, E1323-1332.
Attina, T.M., and Trasande, L. (2015). Association of Exposure to Di-2-Ethylhexylphthalate Replacements With Increased Insulin Resistance in Adolescents From NHANES 2009-2012. J Clin Endocrinol Metab 100, 2640-2650.
Bergh, C., Torgrip, R., Emenius, G., and Ostman, C. (2011). Organophosphate and phthalate esters in air and settled dust - a multi-location indoor study. Indoor Air 21, 67-76.
Bettermann, K., Hohensee, T., and Haybaeck, J. (2014). Steatosis and steatohepatitis: complex disorders. Int J Mol Sci 15, 9924-9944.
Bolling, A.K., Ovrevik, J., Samuelsen, J.T., Holme, J.A., Rakkestad, K.E., Mathisen, G.H., Paulsen, R.E., Korsnes, M.S., and Becher, R. (2012). Mono-2-ethylhexylphthalate (MEHP) induces TNF-alpha release and macrophage differentiation through different signalling pathways in RAW264.7 cells. Toxicol Lett 209, 43-50.
Boucher, J., Kleinridders, A., and Kahn, C.R. (2014). Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 6.
Boudina, S., and Graham, T.E. (2014). Mitochondrial function/dysfunction in white adipose tissue. Exp Physiol 99, 1168-1178.
Bourlier, V., and Bouloumie, A. (2009). Role of macrophage tissue infiltration in obesity and insulin resistance. Diabetes Metab 35, 251-260.
Cai, D., Yuan, M., Frantz, D.F., Melendez, P.A., Hansen, L., Lee, J., and Shoelson, S.E. (2005). Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 11, 183-190.
Casals-Casas, C., and Desvergne, B. (2011). Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol 73, 135-162.
Chau, M.D., Gao, J., Yang, Q., Wu, Z., and Gromada, J. (2010). Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc Natl Acad Sci U S A 107, 12553-12558.
Chen, C.W., Chen, C.F., and Dong, C.D. (2013a). Distribution of Phthalate Esters in Sediments of Kaohsiung Harbor, Taiwan. Soil Sediment Contam 22, 119-131.
Chen, H., Zhang, W., Rui, B.B., Yang, S.M., Xu, W.P., and Wei, W. (2016). Di(2-ethylhexyl) phthalate exacerbates non-alcoholic fatty liver in rats and its potential mechanisms. Environ Toxicol Pharmacol 42, 38-44.
Chen, J., Meng, Y., Zhou, J., Zhuo, M., Ling, F., Zhang, Y., Du, H., and Wang, X. (2013b). Identifying candidate genes for Type 2 Diabetes Mellitus and obesity through gene expression profiling in multiple tissues or cells. J Diabetes Res 2013, 970435.
Chen, M.L., Chen, J.S., Tang, C.L., and Mao, I.F. (2008). The internal exposure of Taiwanese to phthalate--an evidence of intensive use of plastic materials. Environ Int 34, 79-85.
Chiang, H.C., Kuo, Y.T., Shen, C.C., Lin, Y.H., Wang, S.L., and Tsou, T.C. (2016). Mono(2-ethylhexyl)phthalate accumulation disturbs energy metabolism of fat cells. Arch Toxicol 90, 589-601.
Chiang, H.C., Wang, C.H., Yeh, S.C., Lin, Y.H., Kuo, Y.T., Liao, C.W., Tsai, F.Y., Lin, W.Y., Chuang, W.H., and Tsou, T.C. (2017). Comparative microarray analyses of mono(2-ethylhexyl)phthalate impacts on fat cell bioenergetics and adipokine network. Cell Biol Toxicol.
Chiang, J.Y.L. (2017). Bile acid metabolism and signaling in liver disease and therapy. Liver Res 1, 3-9.
Choi, S.M., Tucker, D.F., Gross, D.N., Easton, R.M., DiPilato, L.M., Dean, A.S., Monks, B.R., and Birnbaum, M.J. (2010). Insulin regulates adipocyte lipolysis via an Akt-independent signaling pathway. Mol Cell Biol 30, 5009-5020.
Cinti, S. (2012). The adipose organ at a glance. Dis Model Mech 5, 588-594.
Czech, M.P. (2017). Insulin action and resistance in obesity and type 2 diabetes. Nat Med 23, 804-814.
Dales, R.E., Kauri, L.M., and Cakmak, S. (2018). The associations between phthalate exposure and insulin resistance, beta-cell function and blood glucose control in a population-based sample. Sci Total Environ 612, 1287-1292.
Day, C.P. (2002). Pathogenesis of steatohepatitis. Best Pract Res Clin Gastroenterol 16, 663-678.
de Roos, B., Rungapamestry, V., Ross, K., Rucklidge, G., Reid, M., Duncan, G., Horgan, G., Toomey, S., Browne, J., Loscher, C.E., et al. (2009). Attenuation of inflammation and cellular stress-related pathways maintains insulin sensitivity in obese type I interleukin-1 receptor knockout mice on a high-fat diet. Proteomics 9, 3244-3256.
Dentin, R., Benhamed, F., Hainault, I., Fauveau, V., Foufelle, F., Dyck, J.R., Girard, J., and Postic, C. (2006). Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 55, 2159-2170.
Ding, X., Boney-Montoya, J., Owen, B.M., Bookout, A.L., Coate, K.C., Mangelsdorf, D.J., and Kliewer, S.A. (2012). betaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab 16, 387-393.
Doege, H., Baillie, R.A., Ortegon, A.M., Tsang, B., Wu, Q., Punreddy, S., Hirsch, D., Watson, N., Gimeno, R.E., and Stahl, A. (2006). Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology 130, 1245-1258.
Doege, H., Grimm, D., Falcon, A., Tsang, B., Storm, T.A., Xu, H., Ortegon, A.M., Kazantzis, M., Kay, M.A., and Stahl, A. (2008). Silencing of hepatic fatty acid transporter protein 5 in vivo reverses diet-induced non-alcoholic fatty liver disease and improves hyperglycemia. J Biol Chem 283, 22186-22192.
Dominguez-Morueco, N., Gonzalez-Alonso, S., and Valcarcel, Y. (2014). Phthalate occurrence in rivers and tap water from central Spain. Sci Total Environ 500-501, 139-146.
Dong, R.H., Zhang, H., Zhang, M.R., Chen, J.S., Wu, M., Li, S.G., and Chen, B. (2017). Association between Phthalate Exposure and the Use of Plastic Containers in Shanghai Adults. Biomed Environ Sci 30, 727-736.
Dowman, J.K., Tomlinson, J.W., and Newsome, P.N. (2010). Pathogenesis of non-alcoholic fatty liver disease. QJM 103, 71-83.
Eberle, D., Hegarty, B., Bossard, P., Ferre, P., and Foufelle, F. (2004). SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86, 839-848.
Eckel, R.H., Grundy, S.M., and Zimmet, P.Z. (2005). The metabolic syndrome. Lancet 365, 1415-1428.
Emanuelli, B., Vienberg, S.G., Smyth, G., Cheng, C., Stanford, K.I., Arumugam, M., Michael, M.D., Adams, A.C., Kharitonenkov, A., and Kahn, C.R. (2014). Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest 124, 515-527.
Erion, K.A., Berdan, C.A., Burritt, N.E., Corkey, B.E., and Deeney, J.T. (2015). Chronic Exposure to Excess Nutrients Left-shifts the Concentration Dependence of Glucose-stimulated Insulin Secretion in Pancreatic beta-Cells. J Biol Chem 290, 16191-16201.
Falcon, A., Doege, H., Fluitt, A., Tsang, B., Watson, N., Kay, M.A., and Stahl, A. (2010). FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase. Am J Physiol Endocrinol Metab 299, E384-393.
Fan, K.Q., Li, Y.Y., Wang, H.L., Mao, X.T., Guo, J.X., Wang, F., Huang, L.J., Li, Y.N., Ma, X.Y., Gao, Z.J., et al. (2019). Stress-Induced Metabolic Disorder in Peripheral CD4(+) T Cells Leads to Anxiety-like Behavior. Cell 179, 864-879 e819.
FDA (2001). Safety assessment of di(2-ethylhexyl) phthalate (DEHP) released from medical devices. US Food and Drug Administration, Washington DC. Available at: https://www.fda.gov/media/114001/download.
Feige, J.N., Gelman, L., Rossi, D., Zoete, V., Metivier, R., Tudor, C., Anghel, S.I., Grosdidier, A., Lathion, C., Engelborghs, Y., et al. (2007). The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor gamma modulator that promotes adipogenesis. J Biol Chem 282, 19152-19166.
Feldstein, A.E., Werneburg, N.W., Canbay, A., Guicciardi, M.E., Bronk, S.F., Rydzewski, R., Burgart, L.J., and Gores, G.J. (2004). Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 40, 185-194.
Fisher, F.M., Kleiner, S., Douris, N., Fox, E.C., Mepani, R.J., Verdeguer, F., Wu, J., Kharitonenkov, A., Flier, J.S., Maratos-Flier, E., et al. (2012). FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26, 271-281.
Folch, J., Lees, M., and Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226, 497-509.
Frederiksen, H., Skakkebaek, N.E., and Andersson, A.M. (2007). Metabolism of phthalates in humans. Mol Nutr Food Res 51, 899-911.
Friedewald, W.T., Levy, R.I., and Fredrickson, D.S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18, 499-502.
Friedman, J.M., and Halaas, J.L. (1998). Leptin and the regulation of body weight in mammals. Nature 395, 763-770.
Fromme, H., Gruber, L., Seckin, E., Raab, U., Zimmermann, S., Kiranoglu, M., Schlummer, M., Schwegler, U., Smolic, S., Volkel, W., et al. (2011). Phthalates and their metabolites in breast milk--results from the Bavarian Monitoring of Breast Milk (BAMBI). Environ Int 37, 715-722.
Gao, B., Wang, H., Lafdil, F., and Feng, D. (2012). STAT proteins - key regulators of anti-viral responses, inflammation, and tumorigenesis in the liver. J Hepatol 57, 430-441.
Gao, D., Li, Z., Wen, Z., and Ren, N. (2014). Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere 95, 24-32.
Gao, D.W., and Wen, Z.D. (2015). Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci Total Environ 541, 986-1001.
Garralda-Del-Villar, M., Carlos-Chilleron, S., Diaz-Gutierrez, J., Ruiz-Canela, M., Gea, A., Martinez-Gonzalez, M.A., Bes-Rastrollo, M., Ruiz-Estigarribia, L., Kales, S.N., and Fernandez-Montero, A. (2018). Healthy Lifestyle and Incidence of Metabolic Syndrome in the SUN Cohort. Nutrients 11.
Gepstein, V., and Weiss, R. (2019). Obesity as the Main Risk Factor for Metabolic Syndrome in Children. Front Endocrinol (Lausanne) 10, 568.
Gibson, R., Wang, M.J., Padgett, E., and Beck, A.J. (2005). Analysis of 4-nonylphenols, phthalates, and polychlorinated biphenyls in soils and biosolids. Chemosphere 61, 1336-1344.
Guo, Y., and Kannan, K. (2013). A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environ Sci Technol 47, 14442-14449.
Hajri, T., Han, X.X., Bonen, A., and Abumrad, N.A. (2002). Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest 109, 1381-1389.
Hao, C., Cheng, X., Xia, H., and Ma, X. (2012). The endocrine disruptor mono-(2-ethylhexyl) phthalate promotes adipocyte differentiation and induces obesity in mice. Biosci Rep 32, 619-629.
Harley, K.G., Berger, K., Rauch, S., Kogut, K., Claus Henn, B., Calafat, A.M., Huen, K., Eskenazi, B., and Holland, N. (2017). Association of prenatal urinary phthalate metabolite concentrations and childhood BMI and obesity. Pediatr Res 82, 405-415.
Hatch, E.E., Nelson, J.W., Qureshi, M.M., Weinberg, J., Moore, L.L., Singer, M., and Webster, T.F. (2008). Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999-2002. Environ Health 7, 27.
Heindel, J.J., Blumberg, B., Cave, M., Machtinger, R., Mantovani, A., Mendez, M.A., Nadal, A., Palanza, P., Panzica, G., Sargis, R., et al. (2017). Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 68, 3-33.
Hornung, R.W., and Reed, L.D. (1990). Estimation of Average Concentration in the Presence of Nondetectable Values. Applied Occupational and Environmental Hygiene  5, 46-51.
Houten, S.M., and Wanders, R.J. (2010). A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis 33, 469-477.
Hsu, J.W., Nien, C.Y., Yeh, S.C., Tsai, F.Y., Chen, H.W., Lee, T.S., Chen, S.L., Kao, Y.H., and Tsou, T.C. (2020). Phthalate exposure causes browning-like effects on adipocytes in vitro and in vivo. Food Chem Toxicol 142, 111487.
Hsu, J.W., Yeh, S.C., Tsai, F.Y., Chen, H.W., and Tsou, T.C. (2019). Fibroblast growth factor 21 secretion enhances glucose uptake in mono(2-ethylhexyl)phthalate-treated adipocytes. Toxicol In Vitro 59, 246-254.
Huang, T., Saxena, A.R., Isganaitis, E., and James-Todd, T. (2014). Gender and racial/ethnic differences in the associations of urinary phthalate metabolites with markers of diabetes risk: National Health and Nutrition Examination Survey 2001-2008. Environ Health 13, 6.
Hubinger, J.C. (2010). A survey of phthalate esters in consumer cosmetic products. J Cosmet Sci 61, 457-465.
Ipsen, D.H., Lykkesfeldt, J., and Tveden-Nyborg, P. (2018). Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci 75, 3313-3327.
Itoh, N. (2014). FGF21 as a Hepatokine, Adipokine, and Myokine in Metabolism and Diseases. Front Endocrinol (Lausanne) 5, 107.
Iwase, T., Tajima, A., Sugimoto, S., Okuda, K., Hironaka, I., Kamata, Y., Takada, K., and Mizunoe, Y. (2013). A simple assay for measuring catalase activity: a visual approach. Sci Rep 3, 3081.
Jackson, S.J., Andrews, N., Ball, D., Bellantuono, I., Gray, J., Hachoumi, L., Holmes, A., Latcham, J., Petrie, A., Potter, P., et al. (2017). Does age matter? The impact of rodent age on study outcomes. Lab Anim 51, 160-169.
Jiang, Z.Y., Zhou, Q.L., Coleman, K.A., Chouinard, M., Boese, Q., and Czech, M.P. (2003). Insulin signaling through Akt/protein kinase B analyzed by small interfering RNA-mediated gene silencing. Proc Natl Acad Sci U S A 100, 7569-7574.
Johns, L.E., Cooper, G.S., Galizia, A., and Meeker, J.D. (2015). Exposure assessment issues in epidemiology studies of phthalates. Environ Int 85, 27-39.
Kanda, H., Tateya, S., Tamori, Y., Kotani, K., Hiasa, K., Kitazawa, R., Kitazawa, S., Miyachi, H., Maeda, S., Egashira, K., et al. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116, 1494-1505.
Kang, H.S., Liao, G., DeGraff, L.M., Gerrish, K., Bortner, C.D., Garantziotis, S., and Jetten, A.M. (2013). CD44 plays a critical role in regulating diet-induced adipose inflammation, hepatic steatosis, and insulin resistance. PLoS One 8, e58417.
Kappenstein, O., Vieth, B., Luch, A., and Pfaff, K. (2012). Toxicologically relevant phthalates in food. Exp Suppl 101, 87-106.
Kiefer, F.W., Neschen, S., Pfau, B., Legerer, B., Neuhofer, A., Kahle, M., Hrabe de Angelis, M., Schlederer, M., Mair, M., Kenner, L., et al. (2011). Osteopontin deficiency protects against obesity-induced hepatic steatosis and attenuates glucose production in mice. Diabetologia 54, 2132-2142.
Kiguchi, N., Maeda, T., Kobayashi, Y., Fukazawa, Y., and Kishioka, S. (2009). Leptin enhances CC-chemokine ligand expression in cultured murine macrophage. Biochem Biophys Res Commun 384, 311-315.
Kim, M., Song, N.R., Choi, J.H., Lee, J., and Pyo, H. (2014). Simultaneous analysis of urinary phthalate metabolites of residents in Korea using isotope dilution gas chromatography-mass spectrometry. Sci Total Environ 470-471, 1408-1413.
Kim, M.K., Reaven, G.M., Chen, Y.D., Kim, E., and Kim, S.H. (2015). Hyperinsulinemia in individuals with obesity: Role of insulin clearance. Obesity (Silver Spring) 23, 2430-2434.
Kim, Y.B., Shulman, G.I., and Kahn, B.B. (2002). Fatty acid infusion selectively impairs insulin action on Akt1 and protein kinase C lambda /zeta but not on glycogen synthase kinase-3. J Biol Chem 277, 32915-32922.
Kitade, H., Sawamoto, K., Nagashimada, M., Inoue, H., Yamamoto, Y., Sai, Y., Takamura, T., Yamamoto, H., Miyamoto, K., Ginsberg, H.N., et al. (2012). CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status. Diabetes 61, 1680-1690.
Kloting, N., Hesselbarth, N., Gericke, M., Kunath, A., Biemann, R., Chakaroun, R., Kosacka, J., Kovacs, P., Kern, M., Stumvoll, M., et al. (2015). Di-(2-Ethylhexyl)-Phthalate (DEHP) Causes Impaired Adipocyte Function and Alters Serum Metabolites. PLoS One 10, e0143190.
Kobayashi, M., and Olefsky, J.M. (1978). Effect of experimental hyperinsulinemia on insulin binding and glucose transport in isolated rat adipocytes. Am J Physiol 235, E53-62.
Kodama, K., Toda, K., Morinaga, S., Yamada, S., and Butte, A.J. (2015). Anti-CD44 antibody treatment lowers hyperglycemia and improves insulin resistance, adipose inflammation, and hepatic steatosis in diet-induced obese mice. Diabetes 64, 867-875.
Kong, S., Ji, Y., Liu, L., Chen, L., Zhao, X., Wang, J., Bai, Z., and Sun, Z. (2012). Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China. Environ Pollut 170, 161-168.
Koo, S.H. (2013). Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clin Mol Hepatol 19, 210-215.
Koonen, D.P., Jacobs, R.L., Febbraio, M., Young, M.E., Soltys, C.L., Ong, H., Vance, D.E., and Dyck, J.R. (2007). Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes 56, 2863-2871.
Kramer, A., Green, J., Pollard, J., Jr., and Tugendreich, S. (2014). Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30, 523-530.
Kumari, R., Kumar, S., and Kant, R. (2019). An update on metabolic syndrome: Metabolic risk markers and adipokines in the development of metabolic syndrome. Diabetes Metab Syndr 13, 2409-2417.
Kwon, H., and Pessin, J.E. (2013). Adipokines mediate inflammation and insulin resistance. Front Endocrinol (Lausanne) 4, 71.
Lackey, D.E., and Olefsky, J.M. (2016). Regulation of metabolism by the innate immune system. Nat Rev Endocrinol 12, 15-28.
Lee, B.C., and Lee, J. (2014). Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta 1842, 446-462.
Lee, Y.M., Lee, J.E., Choe, W., Kim, T., Lee, J.Y., Kho, Y., Choi, K., and Zoh, K.D. (2019). Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea. Environ Int 126, 635-643.
Li, R.M., Chen, S.Q., Zeng, N.X., Zheng, S.H., Guan, L., Liu, H.M., Zhou, L.Q., and Xu, J.W. (2017). Browning of Abdominal Aorta Perivascular Adipose Tissue Inhibits Adipose Tissue Inflammation. Metab Syndr Relat Disord 15, 450-457.
Li, Y., Xu, S., Mihaylova, M.M., Zheng, B., Hou, X., Jiang, B., Park, O., Luo, Z., Lefai, E., Shyy, J.Y., et al. (2011). AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13, 376-388.
Lian, J., Watts, R., Quiroga, A.D., Beggs, M.R., Alexander, R.T., and Lehner, R. (2019). Ces1d deficiency protects against high-sucrose diet-induced hepatic triacylglycerol accumulation. J Lipid Res 60, 880-891.
Liu, J., Lu, W., Shi, B., Klein, S., and Su, X. (2019). Peroxisomal regulation of redox homeostasis and adipocyte metabolism. Redox Biol 24, 101167.
Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
Lo, K.A., and Sun, L. (2013). Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Biosci Rep 33.
Loomba, R., and Sanyal, A.J. (2013). The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 10, 686-690.
Lund, S.A., Giachelli, C.M., and Scatena, M. (2009). The role of osteopontin in inflammatory processes. J Cell Commun Signal 3, 311-322.
Manteiga, S., and Lee, K. (2017). Monoethylhexyl Phthalate Elicits an Inflammatory Response in Adipocytes Characterized by Alterations in Lipid and Cytokine Pathways. Environ Health Perspect 125, 615-622.
Marie, C., Vendittelli, F., and Sauvant-Rochat, M.P. (2015). Obstetrical outcomes and biomarkers to assess exposure to phthalates: A review. Environ Int 83, 116-136.
Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F., and Turner, R.C. (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412-419.
Merlin, J., Sato, M., Chia, L.Y., Fahey, R., Pakzad, M., Nowell, C.J., Summers, R.J., Bengtsson, T., Evans, B.A., and Hutchinson, D.S. (2018). Rosiglitazone and a beta3-Adrenoceptor Agonist Are Both Required for Functional Browning of White Adipocytes in Culture. Front Endocrinol (Lausanne) 9, 249.
Mizrahi, S., Dolberg, L., and Jacobsohn, W.Z. (1987). Alteration in aminotransferase levels in rats after acute hepatic injury. Isr J Med Sci 23, 188-192.
Moon, Y.A., Hammer, R.E., and Horton, J.D. (2009). Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice. J Lipid Res 50, 412-423.
Mulder, P., Morrison, M.C., Wielinga, P.Y., van Duyvenvoorde, W., Kooistra, T., and Kleemann, R. (2016). Surgical removal of inflamed epididymal white adipose tissue attenuates the development of non-alcoholic steatohepatitis in obesity. Int J Obes (Lond) 40, 675-684.
Murdolo, G., Hammarstedt, A., Sandqvist, M., Schmelz, M., Herder, C., Smith, U., and Jansson, P.A. (2007). Monocyte chemoattractant protein-1 in subcutaneous abdominal adipose tissue: characterization of interstitial concentration and regulation of gene expression by insulin. J Clin Endocrinol Metab 92, 2688-2695.
Nair, A.B., and Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7, 27-31.
Net, S., Dumoulin, D., El-Osmani, R., Rabodonirina, S., and Ouddane, B. (2014). Case study of PAHs, Me-PAHs, PCBs,Phthalates and Pesticides Contamination in the Somme River water, France. Int J Environ Res 8, 1159-1170.
Ogawa, Y., Kurosu, H., Yamamoto, M., Nandi, A., Rosenblatt, K.P., Goetz, R., Eliseenkova, A.V., Mohammadi, M., and Kuro-o, M. (2007). BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci U S A 104, 7432-7437.
Oh, K.J., Lee, D.S., Kim, W.K., Han, B.S., Lee, S.C., and Bae, K.H. (2016). Metabolic Adaptation in Obesity and Type II Diabetes: Myokines, Adipokines and Hepatokines. Int J Mol Sci 18.
Olefsky, J.M., and Glass, C.K. (2010). Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72, 219-246.
Ota, T. (2013). Chemokine systems link obesity to insulin resistance. Diabetes Metab J 37, 165-172.
Patouraux, S., Rousseau, D., Bonnafous, S., Lebeaupin, C., Luci, C., Canivet, C.M., Schneck, A.S., Bertola, A., Saint-Paul, M.C., Iannelli, A., et al. (2017). CD44 is a key player in non-alcoholic steatohepatitis. J Hepatol 67, 328-338.
Perry, R.J., Camporez, J.G., Kursawe, R., Titchenell, P.M., Zhang, D., Perry, C.J., Jurczak, M.J., Abudukadier, A., Han, M.S., Zhang, X.M., et al. (2015). Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745-758.
Pike, L.S., Smift, A.L., Croteau, N.J., Ferrick, D.A., and Wu, M. (2011). Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta 1807, 726-734.
Plaza-Bolanos, P., Padilla-Sanchez, J.A., Garrido-Frenich, A., Romero-Gonzalez, R., and Martinez-Vidal, J.L. (2012). Evaluation of soil contamination in intensive agricultural areas by pesticides and organic pollutants: south-eastern Spain as a case study. J Environ Monit 14, 1182-1189.
Qiu, Y., Liu, S., Chen, H.T., Yu, C.H., Teng, X.D., Yao, H.T., and Xu, G.Q. (2013). Upregulation of caveolin-1 and SR-B1 in mice with non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int 12, 630-636.
Quon, M.J., Butte, A.J., Zarnowski, M.J., Sesti, G., Cushman, S.W., and Taylor, S.I. (1994). Insulin receptor substrate 1 mediates the stimulatory effect of insulin on GLUT4 translocation in transfected rat adipose cells. J Biol Chem 269, 27920-27924.
Rajesh, P., and Balasubramanian, K. (2014a). Di(2-ethylhexyl)phthalate exposure impairs insulin receptor and glucose transporter 4 gene expression in L6 myotubes. Hum Exp Toxicol 33, 685-700.
Rajesh, P., and Balasubramanian, K. (2014b). Phthalate exposure in utero causes epigenetic changes and impairs insulin signalling. J Endocrinol 223, 47-66.
Roh, Y.S., and Seki, E. (2018). Chemokines and Chemokine Receptors in the Development of NAFLD. Adv Exp Med Biol 1061, 45-53.
Sahai, A., Malladi, P., Melin-Aldana, H., Green, R.M., and Whitington, P.F. (2004). Upregulation of osteopontin expression is involved in the development of nonalcoholic steatohepatitis in a dietary murine model. Am J Physiol Gastrointest Liver Physiol 287, G264-273.
Sainz, N., Barrenetxe, J., Moreno-Aliaga, M.J., and Martinez, J.A. (2015). Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism 64, 35-46.
Salapasidou, M., Samara, C., and Voutsa, D. (2011). Endocrine disrupting compounds in the atmosphere of the urban area of Thessaloniki, Greece. Atmos Environ (1994) 45, 3720-3729.
Samuel, V.T., Liu, Z.X., Qu, X., Elder, B.D., Bilz, S., Befroy, D., Romanelli, A.J., and Shulman, G.I. (2004). Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 279, 32345-32353.
Sanders, F.W., and Griffin, J.L. (2016). De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol Rev Camb Philos Soc 91, 452-468.
Santos-Alvarez, J., Goberna, R., and Sanchez-Margalet, V. (1999). Human leptin stimulates proliferation and activation of human circulating monocytes. Cell Immunol 194, 6-11.
Sasser, T.A., Chapman, S.E., Li, S., Hudson, C., Orton, S.P., Diener, J.M., Gammon, S.T., Correcher, C., and Leevy, W.M. (2012). Segmentation and measurement of fat volumes in murine obesity models using X-ray computed tomography. J Vis Exp, e3680.
Schettler, T. (2006). Human exposure to phthalates via consumer products. Int J Androl 29, 134-139; discussion 181-135.
Silverstein, R.L., and Febbraio, M. (2009). CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal 2, re3.
Slowik, V., Borude, P., Jaeschke, H., Woolbright, B.L., Lee, W.M., Apte, U., and Acute Liver Failure Study, G. (2019). Leukocyte cell derived chemotaxin-2 (Lect2) as a predictor of survival in adult acute liver failure. Transl Gastroenterol Hepatol 4, 17.
Stahlhut, R.W., van Wijngaarden, E., Dye, T.D., Cook, S., and Swan, S.H. (2007). Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ Health Perspect 115, 876-882.
Stanton, M.C., Chen, S.C., Jackson, J.V., Rojas-Triana, A., Kinsley, D., Cui, L., Fine, J.S., Greenfeder, S., Bober, L.A., and Jenh, C.H. (2011). Inflammatory Signals shift from adipose to liver during high fat feeding and influence the development of steatohepatitis in mice. J Inflamm (Lond) 8, 8.
Stephens, J.M., Lee, J., and Pilch, P.F. (1997). Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem 272, 971-976.
Surmi, B.K., and Hasty, A.H. (2008). Macrophage infiltration into adipose tissue: initiation, propagation and remodeling. Future Lipidol 3, 545-556.
Teil, M.J., Blanchard, M., and Chevreuil, M. (2006). Atmospheric fate of phthalate esters in an urban area (Paris-France). Sci Total Environ 354, 212-223.
TFDA (2020). Taiwan Food and Drug Administration, biomonitoring data, https://www.fda.gov.tw/TC/newsContent.aspx?cid=4&id=7848.
Than, A., He, H.L., Chua, S.H., Xu, D., Sun, L., Leow, M.K., and Chen, P. (2015). Apelin Enhances Brown Adipogenesis and Browning of White Adipocytes. J Biol Chem 290, 14679-14691.
Tickner, J.A., Schettler, T., Guidotti, T., McCally, M., and Rossi, M. (2001). Health risks posed by use of Di-2-ethylhexyl phthalate (DEHP) in PVC medical devices: a critical review. Am J Ind Med 39, 100-111.
Titchenell, P.M., Quinn, W.J., Lu, M., Chu, Q., Lu, W., Li, C., Chen, H., Monks, B.R., Chen, J., Rabinowitz, J.D., et al. (2016). Direct Hepatocyte Insulin Signaling Is Required for Lipogenesis but Is Dispensable for the Suppression of Glucose Production. Cell Metab 23, 1154-1166.
Tomas, E., Tsao, T.S., Saha, A.K., Murrey, H.E., Zhang Cc, C., Itani, S.I., Lodish, H.F., and Ruderman, N.B. (2002). Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci U S A 99, 16309-16313.
Tran, T.M., and Kannan, K. (2015). Occurrence of phthalate diesters in particulate and vapor phases in indoor air and implications for human exposure in Albany, New York, USA. Arch Environ Contam Toxicol 68, 489-499.
Tranfo, G., Papaleo, B., Caporossi, L., Capanna, S., De Rosa, M., Pigini, D., Corsetti, F., and Paci, E. (2013). Urinary metabolite concentrations of phthalate metabolites in Central Italy healthy volunteers determined by a validated HPLC/MS/MS analytical method. Int J Hyg Environ Health 216, 481-485.
Trasande, L., Spanier, A.J., Sathyanarayana, S., Attina, T.M., and Blustein, J. (2013). Urinary phthalates and increased insulin resistance in adolescents. Pediatrics 132, e646-655.
Tripathy, S., Lytle, K.A., Stevens, R.D., Bain, J.R., Newgard, C.B., Greenberg, A.S., Huang, L.S., and Jump, D.B. (2014). Fatty acid elongase-5 (Elovl5) regulates hepatic triglyceride catabolism in obese C57BL/6J mice. J Lipid Res 55, 1448-1464.
Tsou, T.C., Chao, H.R., Yeh, S.C., Tsai, F.Y., and Lin, H.J. (2011). Zinc induces chemokine and inflammatory cytokine release from human promonocytes. J Hazard Mater 196, 335-341.
Tsou, T.C., Yeh, S.C., Hsu, J.W., and Tsai, F.Y. (2017). Estrogenic chemicals at body burden levels attenuate energy metabolism in 3T3-L1 adipocytes. J Appl Toxicol 37, 1537-1546.
Vikelsoe, J., Thomsen, M., and Carlsen, L. (2002). Phthalates and nonylphenols in profiles of differently dressed soils. Sci Total Environ 296, 105-116.
Wanders, R.J., Ferdinandusse, S., Brites, P., and Kemp, S. (2010). Peroxisomes, lipid metabolism and lipotoxicity. Biochim Biophys Acta 1801, 272-280.
Wang, F., Mullican, S.E., DiSpirito, J.R., Peed, L.C., and Lazar, M.A. (2013). Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARgamma. Proc Natl Acad Sci U S A 110, 18656-18661.
Wang, P., Wang, S.L., and Fan, C.Q. (2008). Atmospheric distribution of particulate- and gas-phase phthalic esters (PAEs) in a Metropolitan City, Nanjing, East China. Chemosphere 72, 1567-1572.
Wang, W., Zhang, Y., Wang, S., Fan, C.Q., and Xu, H. (2012). Distributions of phthalic esters carried by total suspended particulates in Nanjing, China. Environ Monit Assess 184, 6789-6798.
Wang, X., Tao, W., Xu, Y., Feng, J., and Wang, F. (2014). Indoor phthalate concentration and exposure in residential and office buildings in Xi′an, China. Atmos Environ (1994) 87, 146-152.
Wang, Y., Nishina, P.M., and Naggert, J.K. (2009). Degradation of IRS1 leads to impaired glucose uptake in adipose tissue of the type 2 diabetes mouse model TALLYHO/Jng. J Endocrinol 203, 65-74.
Weisberg, S.P., Hunter, D., Huber, R., Lemieux, J., Slaymaker, S., Vaddi, K., Charo, I., Leibel, R.L., and Ferrante, A.W., Jr. (2006). CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 116, 115-124.
Whiteman, E.L., Cho, H., and Birnbaum, M.J. (2002). Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 13, 444-451.
Whittle, A.J., Carobbio, S., Martins, L., Slawik, M., Hondares, E., Vazquez, M.J., Morgan, D., Csikasz, R.I., Gallego, R., Rodriguez-Cuenca, S., et al. (2012). BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871-885.
Wilson, C.G., Tran, J.L., Erion, D.M., Vera, N.B., Febbraio, M., and Weiss, E.J. (2016). Hepatocyte-Specific Disruption of CD36 Attenuates Fatty Liver and Improves Insulin Sensitivity in HFD-Fed Mice. Endocrinology 157, 570-585.
Wu, L., Zhang, L., Li, B., Jiang, H., Duan, Y., Xie, Z., Shuai, L., Li, J., and Li, J. (2018). AMP-Activated Protein Kinase (AMPK) Regulates Energy Metabolism through Modulating Thermogenesis in Adipose Tissue. Front Physiol 9, 122.
Xie, Z., Ebinghaus, R., Temme, C., Lohmann, R., Caba, A., and Ruck, W. (2007). Occurrence and air-sea exchange of phthalates in the Arctic. Environ Sci Technol 41, 4555-4560.
Xu, J., Zhou, L., Wang, S., Zhu, J., Liu, T., Jia, Y., Sun, D., Chen, H., Wang, Q., Xu, F., et al. (2018). Di-(2-ethylhexyl)-phthalate induces glucose metabolic disorder in adolescent rats. Environ Sci Pollut Res Int 25, 3596-3607.
Yaghjyan, L., Sites, S., Ruan, Y., and Chang, S.H. (2015). Associations of urinary phthalates with body mass index, waist circumference and serum lipids among females: National Health and Nutrition Examination Survey 1999-2004. Int J Obes (Lond) 39, 994-1000.
Yamashita, H., Takenoshita, M., Sakurai, M., Bruick, R.K., Henzel, W.J., Shillinglaw, W., Arnot, D., and Uyeda, K. (2001). A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A 98, 9116-9121.
Yki-Jarvinen, H. (2014). Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2, 901-910.
Yuan, S.Y., Liu, C., Liao, C.S., and Chang, B.V. (2002). Occurrence and microbial degradation of phthalate esters in Taiwan river sediments. Chemosphere 49, 1295-1299.
Zeng, Q., Wei, C., Wu, Y., Li, K., Ding, S., Yuan, J., Yang, X., and Chen, M. (2013). Approach to distribution and accumulation of dibutyl phthalate in rats by immunoassay. Food Chem Toxicol 56, 18-27.
Zhang, B., Berger, J., Hu, E., Szalkowski, D., White-Carrington, S., Spiegelman, B.M., and Moller, D.E. (1996). Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol 10, 1457-1466.
Zhang, W., Shen, X.Y., Zhang, W.W., Chen, H., Xu, W.P., and Wei, W. (2017a). Di-(2-ethylhexyl) phthalate could disrupt the insulin signaling pathway in liver of SD rats and L02 cells via PPARgamma. Toxicol Appl Pharmacol 316, 17-26.
Zhang, W., Shen, X.Y., Zhang, W.W., Chen, H., Xu, W.P., and Wei, W. (2017b). The effects of di 2-ethyl hexyl phthalate (DEHP) on cellular lipid accumulation in HepG2 cells and its potential mechanisms in the molecular level. Toxicol Mech Methods 27, 245-252.
Zhang, Y.H., Chen, B.H., Zheng, L.X., and Wu, X.Y. (2003). [Study on the level of phthalates in human biological samples]. Zhonghua Yu Fang Yi Xue Za Zhi 37, 429-434.
Zheng, X., Zhang, B.T., and Teng, Y. (2014). Distribution of phthalate acid esters in lakes of Beijing and its relationship with anthropogenic activities. Sci Total Environ 476-477, 107-113.
Zhou, L., Chen, H., Xu, Q., Han, X., Zhao, Y., Song, X., Zhao, T., and Ye, L. (2019). The effect of di-2-ethylhexyl phthalate on inflammation and lipid metabolic disorder in rats. Ecotoxicol Environ Saf 170, 391-398.
Zhu, J., Phillips, S.P., Feng, Y.L., and Yang, X. (2006). Phthalate esters in human milk: concentration variations over a 6-month postpartum time. Environ Sci Technol 40, 5276-5281.
指導教授 鄒粹軍 高永旭(Tsui-Chun Tsou Yung-Hsi Kao) 審核日期 2021-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明