博碩士論文 103881002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.144.23.155
姓名 趙冠豪(GUAN-HAO ZHAO)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 研究哇巴因誘導的纖維細胞生長因子2釋放之分子機制
(Study on the molecular mechanisms of ouabain-induced FGF2 release)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-1以後開放)
摘要(中) 強心苷哇巴因是一種具有毒性的天然化合物,但在醫學上以低劑量可以用於治療心力衰竭。它的主要生物作用是通過與鈉鉀泵阿爾法亞基結合後直接抑制鈉鉀泵的酶促活性及誘發伴隨的哇巴因相關的信號傳導。我們實驗室先前利用纖維細胞生長因子受體1(FGFR1)抑製劑SU5402和哇巴因處理A549細胞後,發現哇巴因通過FGF2/FGFR1信號傳導促使A549細胞分泌FGF2和活化FGFR1。為了深入闡明強心苷調節FGF2釋放的分子機制,我們首先依據可能之相關訊息傳遞,篩選了幾種訊息傳遞分子之抑制劑對哇巴因誘導的纖維細胞生長因子2釋放之影響,並使用HSA模型和Chou-Talalay來分析對A549細胞代謝活性有互相拮抗作用的信號傳導路徑。利用這些方法後發現ERK1/2抑製劑U0126強烈拮抗哇巴因誘導的細胞生長抑制,並且隨後的ELISA和Western blot分析顯示U0126減少了哇巴因促使的FGF2釋放和FGFR1磷酸化。另外,接著使用EGFR抑製劑吉非替尼和MKP1抑製劑NSC95397進一步證明了EGFR激活和MKP1減少各自部分地促使ERK1/2磷酸化。總而言之,強心苷哇巴因通過上游的EGFR磷酸化和MKP1減少來激活ERK1/2,從而促進FGF2釋放、FGF2/FGFR1信號傳導。
摘要(英) Cardiac glycoside ouabain is a nature occurring toxic compound but used medically in small doses to treat heart failure. Its primary biological action is to directly inhibit Na+/K+-ATPase enzymatic activity with concomitant ouabain-related signaling induction through binding to Na+/K+-ATPase α subunit. Our laboratory had previously utilized FGFR1 inhibitor SU5402 and ouabain to treat A549 cells and found ouabain promoted FGF2 secretion and FGFR1 activation in A549 cells via FGF2/FGFR1 signaling. To further elucidate the molecular mechanisms underlying cardiac glycoside-mediated FGF2 release, we first screened several compounds to identify small molecular inhibitors of signaling effectors that were able to antagonize to the ouabain effect in A549 cells using HSA model and Chou-Talalay method. These approaches discovered ERK1/2 inhibitor U0126 potently antagonized ouabain-mediated growth inhibition, and subsequent ELISA and Western blot analysis revealed U0126 reduced FGF2 release and FGFR1 phosphorylation mediated by ouabain. Both EGFR activation and MKP1 reduction were found to contribute to ERK1/2 phosphorylation as evidenced by pharmacological approaches using EGFR inhibitor Gefitinib and MKP1 inhibitor NSC95397. Therefore, we concluded that cardiac glycoside ouabain activated ERK1/2 via both upstream EGFR phosphorylation and MKP1 diminishment to promote FGF2 release and susequent FGF2/FGFR1 signaling in A549 cells.
關鍵字(中) ★ Ouabain
★ FGF2
★ ERK1/2
★ MKP1
★ EGFR
★ Na+/K+-ATPase α1
關鍵字(英)
論文目次 摘要 i

ABSTRACT ii

Acknowledgements iii

Table of contents iv

Abbreviations vii

1. Introduction 1
Objectives: 8

2. Materials and methods 10
2-1. Chemicals and reagents 10
2-2. Cell culture 10
2-3. Cell viability assays 11
2-3-1. MTS assay 11
2-3-2. Trypan blue staining 12
2-4. Combined drug analysis 12
2-5. Enzyme-linked immunosorbent assay (ELISA) 13
2-6. Western blot analysis 13
2-7. Gene silencing 14
2-8. Stastical analysis 14

3. Results 16
3-1. Identification of inhibitors antagonizing ouabain-induced cellular effects. 16
3-2. U0126 suppressed ouabain-mediated FGF2 release and membrane integrity loss. 16
3-3. Suppression of MKP1 by ouabain and NSC95397 activated MAPKs and FGFR1. 18
3-4. The EGFR inhibitor Gefitinib retarded ouabain-activated ERK1/2 and FGFR1. 20
3-5. Knockdown of ATP1A1 had no effects on ERK1/2 and EGFR phosphorylation. 21

4. Discussions 23

5. Figures 33
Figure 1. Chemical structure of cardiac glycosides. 33
Figure 2. Structure and mechanism of pumping of the Na+/K+-ATPase. 34
Figure 3. Schematic diagram of FGF2 gene, mRNA transcript and protein isoforms. 35
Figure 4. The basic structure and splice variants of FGFRs. 36
Figure 5. Proposed model of unconventional secretion of FGF2. 37
Figure 6. Ouabain increased A549 cell membrane permeability. 38
Figure 7. U0126 antagonized ouabain-induced FGF2 release and plasma membrane compromise. 39
Figure 8. Repression of MKP1 activity by cardenolides or NSC95397 provoked MAPKs and FGFR1 activation. 41
Figure 9. Inhibition of EGFR phosphorylation by Gefitinib reduced ouabain-induced FGFR1 and ERK1/2 activation. 44
Figure 10. Knockdown of ATP1A1 did not affect ouabain-mediated EGFR and ERK1/2 phosphorylation. 46
Figure 11. Proposed mechanism of action of ouabain-induced cell signaling. 48

6. Tables 49
Table 1. Description of CI values for drug combinations and A549 cell viability using HSA model. 49
Table 2. Description of Fa and CI values for non-fixed ratio of drug combinations using Chou-Talalay method. 50

7. References 51

8. Appendices 66
Appendix 1. The cardenolides ouabain and reevesioside A regulate FGF2/FGFR1 in a dose- and time-dependent manner. 66
Appendix 2. Neither transcription nor proteolysis contributed to the decrease in intracellular protein levels of FGF2 upon treatment of cardenolides. 68
Appendix 3. SU5402, an inhibitor of FGFR1, antagonized FGFR1 activation and cell growth inhibition by cardenolides. 70
Appendix 4. Cardenolides activated ERK1/2 to promote FGF2 export in A549 cells. 72
Appendix 5. The EGFR inhibitor gefitinib decreased ouabain-induced activation of EGFR and downstream activation of ERK 1/2 but not JNK 1/2. 74
Appendix 6. MKP1 inhibition by NSC95397 resembled ouabain-induced activation of ERK1/2 and FGF2/FGFR1. 76
Appendix 7. Identification of inhibitors antagonizing ouabain-induced cell growth inhibition. 78
Appendix 8. Inhibition of ouabain-induced FGFR1 and ERK1/2 activation by LFM-A13 and U0126. 80
Appendix 9. Combined drug analyses using HSA model for discovering candidate inhibitors antagonized ouabain-induced cell growth inhibition. 81
Appendix 10. Growth inhibition curves of ouabain, LFM-A13, SU5402, LY294002 and U0126 against A549 cells. 83
Appendix 11. Fa-CI plots and bar charts of A549 cell viability for combined drug analyses using Chou-Talalay method. 84
Appendix 12. LFM-A13 and U0126 antagonized ouabain-induced FGFR1 and ERK1/2 activation. 86
參考文獻 1. Patel, S., Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomed Pharmacother, 2016. 84: p. 1036-1041.
2. Botelho, A.F.M., et al., A review of cardiac glycosides: Structure, toxicokinetics, clinical signs, diagnosis and antineoplastic potential. Toxicon, 2019. 158: p. 63-68.
3. Huang, H.C., et al., Cardenolides and bufadienolide glycosides from Kalanchoe tubiflora and evaluation of cytotoxicity. Planta Med, 2013. 79(14): p. 1362-9.
4. Cornelius, F., R. Kanai, and C. Toyoshima, A structural view on the functional importance of the sugar moiety and steroid hydroxyls of cardiotonic steroids in binding to Na,K-ATPase. J Biol Chem, 2013. 288(9): p. 6602-16.
5. Schonfeld, W., et al., Origin of differences of inhibitory potency of cardiac glycosides in Na+/K+-transporting ATPase from human cardiac muscle, human brain cortex and guinea-pig cardiac muscle. Biochem Pharmacol, 1986. 35(19): p. 3221-31.
6. Kanji, S. and R.D. MacLean, Cardiac glycoside toxicity: more than 200 years and counting. Crit Care Clin, 2012. 28(4): p. 527-35.
7. Melero, C., M. Medarde, and A. San Feliciano, A Short Review on Cardiotonic Steroids and Their Aminoguanidine Analogues. Molecules, 2000. 5(12): p. 51-81.
8. Manunta, P., B.P. Hamilton, and J.M. Hamlyn, Structure-activity relationships for the hypertensinogenic activity of ouabain: role of the sugar and lactone ring. Hypertension, 2001. 37(2 Pt 2): p. 472-7.
9. Pasteels, J.M., et al., Cardiac glycosides in the defensive secretion of Chrysolina herbacea (Coleoptera, Chrysomelidae). Identification, biological role and pharmacological activity. Comp Biochem Physiol C, 1979. 63C(1): p. 117-21.
10. Pasteels, J.M. and D. Daloze, Cardiac glycosides in the defensive secretion of chrysomelid beetles: evidence for their production by the insects. Science, 1977. 197(4298): p. 70-2.
11. Dobler, S., et al., Convergent adaptive evolution - how insects master the challenge of cardiac glycoside-containing host plants. Entomologia Experimentalis et Applicata, 2015. 157(1): p. 30-39.
12. Cassels, B.K., Analysis of a Maasai arrow poison. J Ethnopharmacol, 1985. 14(2-3): p. 273-81.
13. Kelly, R.A., Cardiac glycosides and congestive heart failure. Am J Cardiol, 1990. 65(10): p. 10E-16E; discussion 22E-23E.
14. Sharma, V.K., Plant Cardenolides in Therapeutics. International Journal of Indigenous Medicinal Plants, 2015.
15. Skou, J.C., The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta, 1957. 23(2): p. 394-401.
16. Engl, E. and D. Attwell, Non-signalling energy use in the brain. J Physiol, 2015. 593(16): p. 3417-29.
17. Armstrong, C.M., The Na/K pump, Cl ion, and osmotic stabilization of cells. Proc Natl Acad Sci U S A, 2003. 100(10): p. 6257-62.
18. Pivovarov, A.S., F. Calahorro, and R.J. Walker, Na(+)/K(+)-pump and neurotransmitter membrane receptors. Invert Neurosci, 2018. 19(1): p. 1.
19. Kiela, P.R. and F.K. Ghishan, Physiology of Intestinal Absorption and Secretion. Best Pract Res Clin Gastroenterol, 2016. 30(2): p. 145-59.
20. Katz, A.I., Renal Na-K-ATPase: its role in tubular sodium and potassium transport. Am J Physiol, 1982. 242(3): p. F207-19.
21. Hilbers, F., et al., Tuning of the Na,K-ATPase by the beta subunit. Sci Rep, 2016. 6: p. 20442.
22. Clausen, M.V., F. Hilbers, and H. Poulsen, The Structure and Function of the Na,K-ATPase Isoforms in Health and Disease. Front Physiol, 2017. 8: p. 371.
23. Crambert, G., et al., Transport and pharmacological properties of nine different human Na, K-ATPase isozymes. J Biol Chem, 2000. 275(3): p. 1976-86.
24. Muller-Ehmsen, J., et al., Ouabain and substrate affinities of human Na(+)-K(+)-ATPase alpha(1)beta(1), alpha(2)beta(1), and alpha(3)beta(1) when expressed separately in yeast cells. Am J Physiol Cell Physiol, 2001. 281(4): p. C1355-64.
25. Wang, J., et al., All human Na(+)-K(+)-ATPase alpha-subunit isoforms have a similar affinity for cardiac glycosides. Am J Physiol Cell Physiol, 2001. 281(4): p. C1336-43.
26. Wang, H.Y. and G.A. O′Doherty, Modulators of Na/K-ATPase: a patent review. Expert Opin Ther Pat, 2012. 22(6): p. 587-605.
27. Ogawa, H., et al., Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain. Proc Natl Acad Sci U S A, 2009. 106(33): p. 13742-7.
28. Laursen, M., et al., Structures and characterization of digoxin- and bufalin-bound Na+,K+-ATPase compared with the ouabain-bound complex. Proc Natl Acad Sci U S A, 2015. 112(6): p. 1755-60.
29. Weigand, K.M., et al., Na,K-ATPase activity modulates Src activation: a role for ATP/ADP ratio. Biochim Biophys Acta, 2012. 1818(5): p. 1269-73.
30. Gable, M.E., et al., Digitalis-induced cell signaling by the sodium pump: on the relation of Src to Na(+)/K(+)-ATPase. Biochem Biophys Res Commun, 2014. 446(4): p. 1151-4.
31. Tian, J. and Z.J. Xie, The Na-K-ATPase and calcium-signaling microdomains. Physiology (Bethesda), 2008. 23: p. 205-11.
32. Tian, J., et al., Binding of Src to Na+/K+-ATPase forms a functional signaling complex. Mol Biol Cell, 2006. 17(1): p. 317-26.
33. Soltoff, S.P. and L. Hedden, Regulation of ERK1/2 by ouabain and Na-K-ATPase-dependent energy utilization and AMPK activation in parotid acinar cells. Am J Physiol Cell Physiol, 2008. 295(3): p. C590-9.
34. Sweadner, K.J., A third mode of ouabain signaling. Focus on "Regulation of ERK1/2 by ouabain and Na-K-ATPase-dependent energy utilization and AMPK activation in parotid acinar cells". Am J Physiol Cell Physiol, 2008. 295(3): p. C588-9.
35. Liu, L., et al., Association of PI3K-Akt signaling pathway with digitalis-induced hypertrophy of cardiac myocytes. Am J Physiol Cell Physiol, 2007. 293(5): p. C1489-97.
36. Shen, J.J., et al., Ouabain impairs cancer metabolism and activates AMPK-Src signaling pathway in human cancer cell lines. Acta Pharmacol Sin, 2020. 41(1): p. 110-118.
37. Liu, J. and Z.J. Xie, The sodium pump and cardiotonic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter trafficking. Biochim Biophys Acta, 2010. 1802(12): p. 1237-45.
38. Madan, N., et al., Src-independent ERK signaling through the rat alpha3 isoform of Na/K-ATPase. Am J Physiol Cell Physiol, 2017. 312(3): p. C222-C232.
39. Dahl, J.P., et al., Participation of Na,K-ATPase in FGF-2 secretion: rescue of ouabain-inhibitable FGF-2 secretion by ouabain-resistant Na,K-ATPase alpha subunits. Biochemistry, 2000. 39(48): p. 14877-83.
40. Florkiewicz, R.Z., J. Anchin, and A. Baird, The inhibition of fibroblast growth factor-2 export by cardenolides implies a novel function for the catalytic subunit of Na+,K+-ATPase. J Biol Chem, 1998. 273(1): p. 544-51.
41. Ornitz, D.M. and N. Itoh, The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol, 2015. 4(3): p. 215-66.
42. Touriol, C., et al., Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons. Biol Cell, 2003. 95(3-4): p. 169-78.
43. Yu, P.J., et al., Basic fibroblast growth factor (FGF-2): the high molecular weight forms come of age. J Cell Biochem, 2007. 100(5): p. 1100-8.
44. Sorensen, V., T. Nilsen, and A. Wiedlocha, Functional diversity of FGF-2 isoforms by intracellular sorting. Bioessays, 2006. 28(5): p. 504-14.
45. Bikfalvi, A., et al., Biological roles of fibroblast growth factor-2. Endocr Rev, 1997. 18(1): p. 26-45.
46. Taverna, S., et al., Shedding of membrane vesicles mediates fibroblast growth factor-2 release from cells. J Biol Chem, 2003. 278(51): p. 51911-9.
47. Piotrowicz, R.S., et al., The 27-kDa heat shock protein facilitates basic fibroblast growth factor release from endothelial cells. J Biol Chem, 1997. 272(11): p. 7042-7.
48. Monti, M., et al., PKCepsilon activation promotes FGF-2 exocytosis and induces endothelial cell proliferation and sprouting. J Mol Cell Cardiol, 2013. 63: p. 107-17.
49. Kole, D., et al., High molecular weight FGF2 isoforms demonstrate canonical receptor-mediated activity and support human embryonic stem cell self-renewal. Stem Cell Res, 2017. 21: p. 106-116.
50. McNeil, P.L., et al., Growth factors are released by mechanically wounded endothelial cells. J Cell Biol, 1989. 109(2): p. 811-22.
51. La Venuta, G., et al., The Startling Properties of Fibroblast Growth Factor 2: How to Exit Mammalian Cells without a Signal Peptide at Hand. J Biol Chem, 2015. 290(45): p. 27015-20.
52. Eguchi, K., et al., Fibroblast growth factors released by wounded endothelial cells stimulate proliferation of synovial cells. J Rheumatol, 1992. 19(12): p. 1925-32.
53. Muthukrishnan, L., E. Warder, and P.L. McNeil, Basic fibroblast growth factor is efficiently released from a cytolsolic storage site through plasma membrane disruptions of endothelial cells. J Cell Physiol, 1991. 148(1): p. 1-16.
54. Florkiewicz, R.Z., et al., Quantitative export of FGF-2 occurs through an alternative, energy-dependent, non-ER/Golgi pathway. J Cell Physiol, 1995. 162(3): p. 388-99.
55. Aizman, I., et al., Cell Injury-Induced Release of Fibroblast Growth Factor 2: Relevance to Intracerebral Mesenchymal Stromal Cell Transplantations. Stem Cells Dev, 2015. 24(14): p. 1623-34.
56. Gospodarowicz, D., et al., Isolation of brain fibroblast growth factor by heparin-Sepharose affinity chromatography: identity with pituitary fibroblast growth factor. Proc Natl Acad Sci U S A, 1984. 81(22): p. 6963-7.
57. Lee, P.L., et al., Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science, 1989. 245(4913): p. 57-60.
58. Ornitz, D.M., et al., Receptor specificity of the fibroblast growth factor family. J Biol Chem, 1996. 271(25): p. 15292-7.
59. Tiong, K.H., L.Y. Mah, and C.O. Leong, Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis, 2013. 18(12): p. 1447-68.
60. Duchesne, L., et al., N-glycosylation of fibroblast growth factor receptor 1 regulates ligand and heparan sulfate co-receptor binding. J Biol Chem, 2006. 281(37): p. 27178-89.
61. Scotet, E. and E. Houssaint, Exon III splicing switch of fibroblast growth factor (FGF) receptor-2 and -3 can be induced by FGF-1 or FGF-2. Oncogene, 1998. 17(1): p. 67-76.
62. Johnson, D.E., et al., Diverse forms of a receptor for acidic and basic fibroblast growth factors. Mol Cell Biol, 1990. 10(9): p. 4728-36.
63. Wang, F., et al., Alternately spliced NH2-terminal immunoglobulin-like Loop I in the ectodomain of the fibroblast growth factor (FGF) receptor 1 lowers affinity for both heparin and FGF-1. J Biol Chem, 1995. 270(17): p. 10231-5.
64. Kalinina, J., et al., The alternatively spliced acid box region plays a key role in FGF receptor autoinhibition. Structure, 2012. 20(1): p. 77-88.
65. Shimizu, A., et al., A novel alternatively spliced fibroblast growth factor receptor 3 isoform lacking the acid box domain is expressed during chondrogenic differentiation of ATDC5 cells. J Biol Chem, 2001. 276(14): p. 11031-40.
66. Zhu, H., et al., Glu-96 of basic fibroblast growth factor is essential for high affinity receptor binding. Identification by structure-based site-directed mutagenesis. J Biol Chem, 1995. 270(37): p. 21869-74.
67. Springer, B.A., et al., Identification and concerted function of two receptor binding surfaces on basic fibroblast growth factor required for mitogenesis. J Biol Chem, 1994. 269(43): p. 26879-84.
68. Baird, A., et al., Receptor- and heparin-binding domains of basic fibroblast growth factor. Proc Natl Acad Sci U S A, 1988. 85(7): p. 2324-8.
69. Porebska, N., et al., Targeting Cellular Trafficking of Fibroblast Growth Factor Receptors as a Strategy for Selective Cancer Treatment. J Clin Med, 2018. 8(1).
70. Huret, J.L., et al., Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res, 2013. 41(Database issue): p. D920-4.
71. Kinoshita, N., et al., Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis. Cell Rep, 2020. 30(11): p. 3875-3888 e3.
72. Sarabipour, S. and K. Hristova, Mechanism of FGF receptor dimerization and activation. Nat Commun, 2016. 7: p. 10262.
73. Yun, Y.R., et al., Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng, 2010. 2010: p. 218142.
74. Martin, C., et al., FGF2 plays a key role in embryonic cerebrospinal fluid trophic properties over chick embryo neuroepithelial stem cells. Dev Biol, 2006. 297(2): p. 402-16.
75. Salotti, J., et al., Fibroblast growth factor 2 causes G2/M cell cycle arrest in ras-driven tumor cells through a Src-dependent pathway. PLoS One, 2013. 8(8): p. e72582.
76. Lemiere, S., et al., Overexpression of high molecular weight FGF-2 forms inhibits glioma growth by acting on cell-cycle progression and protein translation. Exp Cell Res, 2008. 314(20): p. 3701-11.
77. D′Amore, P.A., et al., Elevated basic fibroblast growth factor in the serum of patients with Duchenne muscular dystrophy. Ann Neurol, 1994. 35(3): p. 362-5.
78. Akl, M.R., et al., Molecular and clinical significance of fibroblast growth factor 2 (FGF2 /bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget, 2016. 7(28): p. 44735-44762.
79. Liu, X., et al., Elevated serum levels of FGF-2, NGF and IGF-1 in patients with manic episode of bipolar disorder. Psychiatry Res, 2014. 218(1-2): p. 54-60.
80. Naumnik, W., et al., Circulating Thrombospondin-2 and FGF-2 in Patients with Advanced Non-small Cell Lung Cancer: Correlation with Survival. Adv Exp Med Biol, 2015. 833: p. 9-14.
81. Temmerman, K., et al., A direct role for phosphatidylinositol-4,5-bisphosphate in unconventional secretion of fibroblast growth factor 2. Traffic, 2008. 9(7): p. 1204-17.
82. Ebert, A.D., et al., Tec-kinase-mediated phosphorylation of fibroblast growth factor 2 is essential for unconventional secretion. Traffic, 2010. 11(6): p. 813-26.
83. Zacherl, S., et al., A direct role for ATP1A1 in unconventional secretion of fibroblast growth factor 2. J Biol Chem, 2015. 290(6): p. 3654-65.
84. Dimou, E., et al., Single event visualization of unconventional secretion of FGF2. J Cell Biol, 2019. 218(2): p. 683-699.
85. Muller, H.M., et al., Formation of disulfide bridges drives oligomerization, membrane pore formation, and translocation of fibroblast growth factor 2 to cell surfaces. J Biol Chem, 2015. 290(14): p. 8925-37.
86. Steringer, J.P., et al., Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-dependent oligomerization of fibroblast growth factor 2 (FGF2) triggers the formation of a lipidic membrane pore implicated in unconventional secretion. J Biol Chem, 2012. 287(33): p. 27659-69.
87. Legrand, C., et al., The Na,K-ATPase acts upstream of phosphoinositide PI(4,5)P2 facilitating unconventional secretion of Fibroblast Growth Factor 2. Commun Biol, 2020. 3(1): p. 141.
88. Steringer, J.P., H.M. Muller, and W. Nickel, Unconventional secretion of fibroblast growth factor 2--a novel type of protein translocation across membranes? J Mol Biol, 2015. 427(6 Pt A): p. 1202-10.
89. Smith, J.A., et al., Inhibition of export of fibroblast growth factor-2 (FGF-2) from the prostate cancer cell lines PC3 and DU145 by Anvirzel and its cardiac glycoside component, oleandrin. Biochem Pharmacol, 2001. 62(4): p. 469-72.
90. Wang, F., et al., Nuclear translocation of fibroblast growth factor-2 (FGF2) is regulated by Karyopherin-beta2 and Ran GTPase in human glioblastoma cells. Oncotarget, 2015. 6(25): p. 21468-78.
91. Rhoads, D.N., S.G. Eskin, and L.V. McIntire, Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol, 2000. 20(2): p. 416-21.
92. Shiratori, O., Growth inhibitory effect of cardiac glycosides and aglycones on neoplastic cells: in vitro and in vivo studies. Gan, 1967. 58(6): p. 521-8.
93. Calderon-Montano, J.M., et al., Evaluating the cancer therapeutic potential of cardiac glycosides. Biomed Res Int, 2014. 2014: p. 794930.
94. Schneider, N.F.Z., et al., Anticancer and Immunogenic Properties of Cardiac Glycosides. Molecules, 2017. 22(11).
95. Schneider, N.F.Z., et al., Cardiac Glycoside Glucoevatromonoside Induces Cancer Type-Specific Cell Death. Front Pharmacol, 2018. 9: p. 70.
96. Xue, R., et al., TXA9, a cardiac glycoside from Streptocaulon juventas, exerts a potent anti-tumor activity against human non-small cell lung cancer cells in vitro and in vivo. Steroids, 2015. 94: p. 51-9.
97. Maryam, A., et al., Proscillaridin A Promotes Oxidative Stress and ER Stress, Inhibits STAT3 Activation, and Induces Apoptosis in A549 Lung Adenocarcinoma Cells. Oxid Med Cell Longev, 2018. 2018: p. 3853409.
98. Liu, N., et al., Inhibition of cell migration by ouabain in the A549 human lung cancer cell line. Oncol Lett, 2013. 6(2): p. 475-479.
99. Shin, H.K., et al., Inactivation of Src-to-ezrin pathway: a possible mechanism in the ouabain-mediated inhibition of A549 cell migration. Biomed Res Int, 2015. 2015: p. 537136.
100. Miao, D., et al., Three new cardiac glycosides obtained from the roots of Streblus asper Lour. and their cytotoxic and melanogenesis-inhibitory activities. RSC Advances, 2018. 8(35): p. 19570-19579.
101. LI, S., et al., Ouabain inhibits Wnt/β-catenin signaling and induces cytotoxicity in cancer cells. 2018. 48(1674-7232): p. 65.
102. Trenti, A., et al., Cardiac glycoside ouabain induces autophagic cell death in non-small cell lung cancer cells via a JNK-dependent decrease of Bcl-2. Biochem Pharmacol, 2014. 89(2): p. 197-209.
103. Lee, J.Y., et al., Digoxin enhances radiation response in radioresistant A549 cells by reducing protein phosphatase 2A. Biosci Rep, 2017. 37(6).
104. Wang, Y., et al., Src mediates extracellular signal-regulated kinase 1/2 activation and autophagic cell death induced by cardiac glycosides in human non-small cell lung cancer cell lines. Mol Carcinog, 2015. 54 Suppl 1: p. E26-34.
105. Mijatovic, T., et al., The α1 subunit of the sodium pump could represent a novel target to combat non-small cell lung cancers. 2007. 212(2): p. 170-179.
106. Tan, Q., et al., A novel FGFR1-binding peptide exhibits anti-tumor effect on lung cancer by inhibiting proliferation and angiogenesis. Int J Biol Sci, 2018. 14(10): p. 1389-1398.
107. Li, D., et al., A novel decoy receptor fusion protein for FGF-2 potently inhibits tumour growth. Br J Cancer, 2014. 111(1): p. 68-77.
108. Osman, M.H., et al., Cardiac glycosides use and the risk and mortality of cancer; systematic review and meta-analysis of observational studies. PLoS One, 2017. 12(6): p. e0178611.
109. Biggar, R.J., et al., Digoxin Use and the Risk of Breast Cancer in Women. 2011. 29(16): p. 2165-2170.
110. Biggar, R.J., Molecular Pathways: Digoxin Use and Estrogen-Sensitive Cancers—Risks and Possible Therapeutic Implications. 2012. 18(8): p. 2133-2137.
111. Karaś, K., et al., Cardiac glycosides with target at direct and indirect interactions with nuclear receptors. Biomedicine & Pharmacotherapy, 2020. 127: p. 110106.
112. Rehman, R. and O. Hai, Digitalis Toxicity, in StatPearls. 2020, StatPearls Publishing
Copyright © 2020, StatPearls Publishing LLC.: Treasure Island (FL).
113. Currie, G.M., J.M. Wheat, and H. Kiat, Pharmacokinetic considerations for digoxin in older people. The open cardiovascular medicine journal, 2011. 5: p. 130-135.
114. Becker, D.E., Drug therapy in dental practice: general principles. Part 2 - pharmacodynamic considerations. Anesthesia progress, 2007. 54(1): p. 19-25.
115. Swinney, D.C., Phenotypic vs. target-based drug discovery for first-in-class medicines. Clin Pharmacol Ther, 2013. 93(4): p. 299-301.
116. Lage, O.M., et al., Current Screening Methodologies in Drug Discovery for Selected Human Diseases. Mar Drugs, 2018. 16(8).
117. Wagner, B.K. and S.L. Schreiber, The Power of Sophisticated Phenotypic Screening and Modern Mechanism-of-Action Methods. Cell Chem Biol, 2016. 23(1): p. 3-9.
118. Schenone, M., et al., Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol, 2013. 9(4): p. 232-40.
119. Foucquier, J. and M. Guedj, Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect, 2015. 3(3): p. e00149.
120. Chang, H.S., et al., Cytotoxic cardenolide glycosides from the root of Reevesia formosana. Phytochemistry, 2013. 87: p. 86-95.
121. Hsiao, P.Y., et al., Cytotoxic cardenolides and sesquiterpenoids from the fruits of Reevesia formosana. Phytochemistry, 2016. 130: p. 282-90.
122. Hsu, J.L., et al., Epi-reevesioside F inhibits Na+/K+-ATPase, causing cytosolic acidification, Bak activation and apoptosis in glioblastoma. Oncotarget, 2015. 6(27): p. 24032-46.
123. Niu, X.-l., Y. Wang, and R.C. Xu, Ouabain inhibits the proliferation of human breast cancer MCF-7 cells via estrogen receptor isoforms pathway. Chinese Pharmacological Bulletin, 2012. 28: p. 1694-1698.
124. VA, D.A.S., et al., Modulation of ABCC1 and ABCG2 proteins by ouabain in human breast cancer cells. Anticancer Res, 2014. 34(3): p. 1441-8.
125. Karas, K., et al., Cardiac glycosides with target at direct and indirect interactions with nuclear receptors. Biomed Pharmacother, 2020. 127: p. 110106.
126. Vogt, A., et al., A cell-active inhibitor of mitogen-activated protein kinase phosphatases restores paclitaxel-induced apoptosis in dexamethasone-protected cancer cells. Mol Cancer Ther, 2008. 7(2): p. 330-40.
127. Lazo, J.S., et al., Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors. Mol Pharmacol, 2002. 61(4): p. 720-8.
128. Panchal, R.G., et al., Reduced expression of CD45 protein-tyrosine phosphatase provides protection against anthrax pathogenesis. J Biol Chem, 2009. 284(19): p. 12874-85.
129. Lai, T.S., et al., Identification of chemical inhibitors to human tissue transglutaminase by screening existing drug libraries. Chem Biol, 2008. 15(9): p. 969-78.
130. Dulyaninova, N.G., et al., Cysteine 81 is critical for the interaction of S100A4 and myosin-IIA. Biochemistry, 2011. 50(33): p. 7218-7227.
131. Mignatti, P., T. Morimoto, and D.B. Rifkin, Basic fibroblast growth factor, a protein devoid of secretory signal sequence, is released by cells via a pathway independent of the endoplasmic reticulum-Golgi complex. 1992. 151(1): p. 81-93.
132. Taverna, S., et al., Intracellular trafficking of endogenous fibroblast growth factor-2. FEBS J, 2008. 275(7): p. 1579-92.
133. Mundorf, M.L., S.E. Hochstetler, and R.M. Wightman, Amine weak bases disrupt vesicular storage and promote exocytosis in chromaffin cells. J Neurochem, 1999. 73(6): p. 2397-405.
134. Qureshi, O.S., et al., Regulation of P2X4 receptors by lysosomal targeting, glycan protection and exocytosis. J Cell Sci, 2007. 120(Pt 21): p. 3838-49.
135. Sun, L., et al., Design, Synthesis, and Evaluations of Substituted 3-[(3- or 4-Carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as Inhibitors of VEGF, FGF, and PDGF Receptor Tyrosine Kinases. Journal of Medicinal Chemistry, 1999. 42(25): p. 5120-5130.
136. Mohammadi, M., et al., Structures of the Tyrosine Kinase Domain of Fibroblast Growth Factor Receptor in Complex with Inhibitors. 1997. 276(5314): p. 955-960.
137. Paterson, J.L., et al., Preclinical studies of fibroblast growth factor receptor 3 as a therapeutic target in multiple myeloma. 2004. 124(5): p. 595-603.
138. Gudernova, I., et al., Multikinase activity of fibroblast growth factor receptor (FGFR) inhibitors SU5402, PD173074, AZD1480, AZD4547 and BGJ398 compromises the use of small chemicals targeting FGFR catalytic activity for therapy of short-stature syndromes. Human Molecular Genetics, 2015. 25(1): p. 9-23.
139. Wotring, L.L., et al., Dual mechanisms of inhibition of DNA synthesis by triciribine. Cancer Res, 1990. 50(16): p. 4891-9.
140. Yang, L., et al., Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res, 2004. 64(13): p. 4394-9.
141. Clark, K., et al., Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: a distinct upstream kinase mediates Ser-172 phosphorylation and activation. The Journal of biological chemistry, 2009. 284(21): p. 14136-14146.
142. Feldman, R.I., et al., Novel Small Molecule Inhibitors of 3-Phosphoinositide-dependent Kinase-1. 2005. 280(20): p. 19867-19874.
143. Akker, E., et al., The Btk inhibitor LFM-A13 is a potent inhibitor of Jak2 kinase activity. Biological chemistry, 2004. 385: p. 409-13.
144. Wang, F., et al., Inhibitor of Tec kinase, LFM-A13, decreases pro-inflammatory mediators production in LPS-stimulated RAW264.7 macrophages via NF-kappaB pathway. Oncotarget, 2017. 8(21): p. 34099-34110.
145. Uckun, F.M., et al., Anti-breast cancer activity of LFM-A13, a potent inhibitor of Polo-like kinase (PLK). Bioorganic & Medicinal Chemistry, 2007. 15(2): p. 800-814.
146. Tyner, J.W., et al., CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood, 2010. 115(25): p. 5232-40.
147. Ong, Q., et al., U0126 Protects Cells against Oxidative Stress Independent of Its Function as a MEK Inhibitor. ACS Chemical Neuroscience, 2015. 6(1): p. 130-137.
148. Wauson, E.M., et al., Off-target effects of MEK inhibitors. Biochemistry, 2013. 52(31): p. 5164-6.
149. Evans, C., et al., MEK inhibitor U0126 reverses protection of axons from Wallerian degeneration independently of MEK-ERK signaling. PLoS One, 2013. 8(10): p. e76505.
150. Workman, P., et al., Drugging the PI3 kinome: from chemical tools to drugs in the clinic. Cancer Res, 2010. 70(6): p. 2146-57.
151. Arrowsmith, C.H., et al., The promise and peril of chemical probes. Nat Chem Biol, 2015. 11(8): p. 536-41.
152. Karaman, M.W., et al., A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol, 2008. 26(1): p. 127-32.
153. Young, P.R., et al., Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. J Biol Chem, 1997. 272(18): p. 12116-21.
154. Lali, F.V., et al., The pyridinyl imidazole inhibitor SB203580 blocks phosphoinositide-dependent protein kinase activity, protein kinase B phosphorylation, and retinoblastoma hyperphosphorylation in interleukin-2-stimulated T cells independently of p38 mitogen-activated protein kinase. J Biol Chem, 2000. 275(10): p. 7395-402.
155. Shanware, N.P., et al., Non-specific in vivo inhibition of CK1 by the pyridinyl imidazole p38 inhibitors SB 203580 and SB 202190. BMB Rep, 2009. 42(3): p. 142-7.
156. Kaiser, F., et al., In Silico Driven Prediction of MAPK14 Off-Targets Reveals Unrelated Proteins with High Accuracy. 2020: p. 2020.07.24.219071.
157. Bennett, B.L., et al., SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A, 2001. 98(24): p. 13681-6.
158. Bain, J., et al., The specificities of protein kinase inhibitors: an update. Biochem J, 2003. 371(Pt 1): p. 199-204.
159. Lee, Y.Z., et al., Synthesis and biological evaluation of tylophorine-derived dibenzoquinolines as orally active agents: exploration of the role of tylophorine e ring on biological activity. J Med Chem, 2012. 55(23): p. 10363-77.
160. Strober, W., Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol, 2015. 111: p. A3 B 1-A3 B 3.
161. Perry, S.W., L.G. Epstein, and H.A. Gelbard, In situ trypan blue staining of monolayer cell cultures for permanent fixation and mounting. Biotechniques, 1997. 22(6): p. 1020-1, 1024.
162. Berenbaum, M.C., What is synergy? Pharmacol Rev, 1989. 41(2): p. 93-141.
163. Chou, T.C., Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res, 2010. 70(2): p. 440-6.
164. Tran, S.L., et al., Trypan blue dye enters viable cells incubated with the pore-forming toxin HlyII of Bacillus cereus. PLoS One, 2011. 6(9): p. e22876.
165. Liu, J., et al., Ouabain induces endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells by a clathrin-dependent mechanism. Kidney Int, 2004. 66(1): p. 227-41.
166. Zhou, X., et al., Inhibition of Na,K-ATPase activates PI3 kinase and inhibits apoptosis in LLC-PK1 cells. Biochem Biophys Res Commun, 2001. 285(1): p. 46-51.
167. Yang, C.W., et al., The cardenolide ouabain suppresses coronaviral replication via augmenting a Na(+)/K(+)-ATPase-dependent PI3K_PDK1 axis signaling. Toxicol Appl Pharmacol, 2018. 356: p. 90-97.
168. Jun, D.W., et al., Ouabain, a cardiac glycoside, inhibits the Fanconi anemia/BRCA pathway activated by DNA interstrand cross-linking agents. PLoS One, 2013. 8(10): p. e75905.
169. Zhang, Y., et al., Plasma membrane changes during programmed cell deaths. Cell Res, 2018. 28(1): p. 9-21.
170. Cargnello, M. and P.P. Roux, Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev, 2011. 75(1): p. 50-83.
171. Caunt, C.J. and S.M. Keyse, Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling. FEBS J, 2013. 280(2): p. 489-504.
172. Bluthgen, N., et al., Profiling the MAPK/ERK dependent and independent activity regulated transcriptional programs in the murine hippocampus in vivo. Sci Rep, 2017. 7: p. 45101.
173. Baumann, P., et al., Dusp8 affects hippocampal size and behavior in mice and humans. Sci Rep, 2019. 9(1): p. 19483.
174. Ferguson, B.S., et al., Mitogen-Dependent Regulation of DUSP1 Governs ERK and p38 Signaling During Early 3T3-L1 Adipocyte Differentiation. J Cell Physiol, 2016. 231(7): p. 1562-74.
175. Robitaille, A.C., et al., DUSP1 regulates apoptosis and cell migration, but not the JIP1-protected cytokine response, during Respiratory Syncytial Virus and Sendai Virus infection. Sci Rep, 2017. 7(1): p. 17388.
176. Seo, H., et al., Dual-specificity phosphatase 5 acts as an anti-inflammatory regulator by inhibiting the ERK and NF-kappaB signaling pathways. Sci Rep, 2017. 7(1): p. 17348.
177. Habibian, J.S., et al., DUSP5 functions as a feedback regulator of TNFalpha-induced ERK1/2 dephosphorylation and inflammatory gene expression in adipocytes. Sci Rep, 2017. 7(1): p. 12879.
178. Li, C., et al., Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development, 2007. 134(1): p. 167-76.
179. Buffet, C., et al., DUSP5 and DUSP6, two ERK specific phosphatases, are markers of a higher MAPK signaling activation in BRAF mutated thyroid cancers. PLoS One, 2017. 12(9): p. e0184861.
180. Dubey, N.K., et al., NSC 95397 Suppresses Proliferation and Induces Apoptosis in Colon Cancer Cells through MKP-1 and the ERK1/2 Pathway. Int J Mol Sci, 2018. 19(6).
181. Haas, M., A. Askari, and Z. Xie, Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J Biol Chem, 2000. 275(36): p. 27832-7.
182. Aydemir-Koksoy, A., J. Abramowitz, and J.C. Allen, Ouabain-induced signaling and vascular smooth muscle cell proliferation. J Biol Chem, 2001. 276(49): p. 46605-11.
183. Haas, M., et al., Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J Biol Chem, 2002. 277(21): p. 18694-702.
184. Piechocki, M.P., et al., Breast cancer expressing the activated HER2/neu is sensitive to gefitinib in vitro and in vivo and acquires resistance through a novel point mutation in the HER2/neu. Cancer Res, 2007. 67(14): p. 6825-43.
185. Hauck, C., et al., Isoform specificity of cardiac glycosides binding to human Na+,K+-ATPase alpha1beta1, alpha2beta1 and alpha3beta1. Eur J Pharmacol, 2009. 622(1-3): p. 7-14.
186. Pierre, S.V., et al., Isoform specificity of Na-K-ATPase-mediated ouabain signaling. Am J Physiol Renal Physiol, 2008. 294(4): p. F859-66.
187. Xiao, Y., et al., Ouabain targets the Na(+)/K(+)-ATPase alpha3 isoform to inhibit cancer cell proliferation and induce apoptosis. Oncol Lett, 2017. 14(6): p. 6678-6684.
188. Yu, Y., et al., ATP1A1 Integrates AKT and ERK Signaling via Potential Interaction With Src to Promote Growth and Survival in Glioma Stem Cells. Front Oncol, 2019. 9: p. 320.
189. Burkard, C., et al., ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells. J Virol, 2015. 89(8): p. 4434-48.
190. Zhao, G.H., et al., The cardenolides ouabain and reevesioside A promote FGF2 secretion and subsequent FGFR1 phosphorylation via converged ERK1/2 activation. Biochem Pharmacol, 2020. 172: p. 113741.
191. van der Valk, J., et al., The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture. Toxicol In Vitro, 2004. 18(1): p. 1-12.
192. Arodin Selenius, L., et al., The Cell Culture Medium Affects Growth, Phenotype Expression and the Response to Selenium Cytotoxicity in A549 and HepG2 Cells. Antioxidants (Basel), 2019. 8(5).
193. Trenti, A. Analysis of the molecular mechanisms of the antineoplastic effect of ouabain. 2012.
194. Wancket, L.M., W.J. Frazier, and Y. Liu, Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease. Life Sci, 2012. 90(7-8): p. 237-48.
195. Chen, H.F., H.C. Chuang, and T.H. Tan, Regulation of Dual-Specificity Phosphatase (DUSP) Ubiquitination and Protein Stability. Int J Mol Sci, 2019. 20(11).
196. Kamata, H., et al., Reactive Oxygen Species Promote TNFα-Induced Death and Sustained JNK Activation by Inhibiting MAP Kinase Phosphatases. Cell, 2005. 120(5): p. 649-661.
197. Lin, Y.W. and J.L. Yang, Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J Biol Chem, 2006. 281(2): p. 915-26.
198. Lin, Y.W., S.M. Chuang, and J.L. Yang, ERK1/2 achieves sustained activation by stimulating MAPK phosphatase-1 degradation via the ubiquitin-proteasome pathway. J Biol Chem, 2003. 278(24): p. 21534-41.
199. Brondello, J.M., J. Pouyssegur, and F.R. McKenzie, Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science, 1999. 286(5449): p. 2514-7.
200. Crowell, S., et al., Post-translational regulation of mitogen-activated protein kinase phosphatase (MKP)-1 and MKP-2 in macrophages following lipopolysaccharide stimulation: the role of the C termini of the phosphatases in determining their stability. J Biol Chem, 2014. 289(42): p. 28753-64.
201. Lee, M., et al., Mitogen-activated protein kinase phosphatase-1 inhibition and sustained extracellular signal-regulated kinase 1/2 activation in camptothecin-induced human colon cancer cell death. Cancer Biol Ther, 2013. 14(11): p. 1007-15.
202. Kinoshita, P.F., et al., Alpha 2 Na(+),K(+)-ATPase silencing induces loss of inflammatory response and ouabain protection in glial cells. Sci Rep, 2017. 7(1): p. 4894.
203. Xiao, Y., et al., Ouabain targets the Na(+)/K(+)-ATPase α(3) isoform to inhibit cancer cell proliferation and induce apoptosis. Oncol Lett, 2017. 14(6): p. 6678-6684.
204. Chan, S.H., et al., Reevesioside F induces potent and efficient anti-proliferative and apoptotic activities through Na(+)/K(+)-ATPase alpha3 subunit-involved mitochondrial stress and amplification of caspase cascades. Biochem Pharmacol, 2013. 86(11): p. 1564-75.
205. Tokhtaeva, E., G. Sachs, and O. Vagin, Assembly with the Na,K-ATPase alpha(1) subunit is required for export of beta(1) and beta(2) subunits from the endoplasmic reticulum. Biochemistry, 2009. 48(48): p. 11421-11431.
206. Yoshimura, S.H., et al., Fast degradation of the auxiliary subunit of Na+/K+-ATPase in the plasma membrane of HeLa cells. J Cell Sci, 2008. 121(Pt 13): p. 2159-68.
207. Kepp, O., et al., Anticancer activity of cardiac glycosides: At the frontier between cell-autonomous and immunological effects. Oncoimmunology, 2012. 1(9): p. 1640-1642.
208. Roberts, D.M., et al., Pharmacological treatment of cardiac glycoside poisoning. Br J Clin Pharmacol, 2016. 81(3): p. 488-95.
209. Laursen, M., et al., Crystal structure of the high-affinity Na+,K+-ATPase–ouabain complex with Mg2+ bound in the cation binding site. 2013. 110(27): p. 10958-10963.
210. Álvarez, J., et al. Epithelial Na+,K+-ATPase A Sticky Pump. 2016.
211. Prilusky, J., et al., Proteopedia: a status report on the collaborative, 3D web-encyclopedia of proteins and other biomolecules. J Struct Biol, 2011. 175(2): p. 244-52.
212. Chlebova, K., et al., High molecular weight FGF2: the biology of a nuclear growth factor. Cell Mol Life Sci, 2009. 66(2): p. 225-35.
213. Bong, S.M., et al., Regulation of mRNA export through API5 and nuclear FGF2 interaction. Nucleic Acids Research, 2020. 48(11): p. 6340-6352.
214. Brough, D., P. Pelegrin, and W. Nickel, An emerging case for membrane pore formation as a common mechanism for the unconventional secretion of FGF2 and IL-1β. 2017. 130(19): p. 3197-3202.
215. Loewe, S., The problem of synergism and antagonism of combined drugs. Arzneimittelforschung, 1953. 3(6): p. 285-90.
216. Wu, J., et al., Cell signaling associated with Na(+)/K(+)-ATPase: activation of phosphatidylinositide 3-kinase IA/Akt by ouabain is independent of Src. Biochemistry, 2013. 52(50): p. 9059-67.
217. Akkuratov, E.E., et al., Ouabain-Induced Signaling and Cell Survival in SK-N-SH Neuroblastoma Cells Differentiated by Retinoic Acid. CNS Neurol Disord Drug Targets, 2015. 14(10): p. 1343-9.
218. Akimova, O.A., et al., Death of ouabain-treated renal epithelial cells: evidence for p38 MAPK-mediated Na (i) (+) /K (i) (+) -independent signaling. Apoptosis, 2009. 14(11): p. 1266-73.
指導教授 李秀珠 審核日期 2020-9-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明