博碩士論文 104022004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:54.227.97.219
姓名 吳宜靜(Yi-Jing Wu)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 使用CloudSat及ECMWF再分析資料探討南海及海洋大陸地區深對流之環境因子
(Investigate Deep Convections and their Environmental Factors in the MC and SCS by using CloudSat and ECMWF analysis)
相關論文
★ 地球同步衛星觀測資料之雲區像素辨識★ 結合掩星折射率與高光譜紅外線觀測之大氣溫溼度垂直剖面反演
★ 結合衛星反演資料與WRF模式探討梅雨鋒面水氣傳送關聯性之個案研究★ Optimal Use of Satellite Sounding Products for Numerical Weather Prediction
★ The spatial correlation of satellite-estimated PM2.5 and epidemiological diseases in Taiwan★ Assessment of the NWP Model Physical Fields from Radiative Quantity
★ 海表面風場與通量於熱帶氣旋發展影響之探討★ 使用衛星資料評析全球預報模式之 雲參數特性
★ 衛星輻射強度與反演產品之資料同化研究--尼伯特颱風(2016)個案分析★ 日本氣象同步衛星 Himawari-8 向日葵八號 之雲微物理參數反演驗證與評估
★ 掩星資料於颱風快速增強機制之模擬研究-梅姬颱風(2010)★ 利用多頻道衛星觀測評估WRF數值模式於不同微物理方案之雲特性:以梅雨鋒面降水系統個案為例
★ 應用多時期向日葵8號衛星影像進行雲像素的偵測與追蹤★ 使用 CloudSat 分析南海與海洋大陸地區之深對 流與動力環境特徵
★ 印尼地區地表性質與雲特徵之探討★ 台灣及南海地區雲的時空特徵: 向日葵8號於夏季觀測之前導研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-12-31以後開放)
摘要(中) 深對流在地球輻射收支平衡以及水循環扮演重要的角色,南海以及海洋大陸地區(SCS-MC)是世界上最容易發生深對流的地區之一,此區的深對流與多重尺度的天氣/氣候系統緊密的互動,進而影響全球氣候,然而,數值模式中預報SCS-MC的深對流仍然具有挑戰性,因此本研究嘗試利用主動微波觀測衛星CloudSat結合ECMWF再分析資料分析深對流的垂直結構以及基本熱力參數,包含T2m、TPW、SHF、LHF、LTS以及CAPE。
研究結果顯示深對流核心(Deep convective core, DCC)在空間分布上有明顯的日夜變化,日間(~1330 LT) DCC在洋面上以及沿岸地區有較大的出現機率,夜晚(~0130 LT) 則集中於陸地。整體而言。夜間之DCC之次數較日間為頻繁。另一方面,陸地上DCC的垂直結構有較大日夜差異,日間有較強的上衝流,最大回波(約20 dBZ)從6公里延展至14公里高,夜晚時上衝流較弱,因此最大回波延展高度降至12公里。
本研究中分析DCC熱力環境參數的特徵,定義各熱力參數DCC生成的閾值,結果顯示各項參數皆有其特性;T2m 與LTS有特定的好發區間;TPW與DCC發生機率呈正相關;雖然CAPE值則對DCC發生機率較無敏感性,由於SCS與MC的大氣環境普遍因為大氣溼度較高而處於不穩定狀態,因此CAPE值雖非直接因素,但大氣仍需處不穩定條件方利於DCC之生成。在南海地區,除了CAPE外,其他五項熱力因子皆會影響DCC生成的機率。在海洋大陸地區,DCC生成的機率主要與T2m、TPW以及SHF有關。
本研究探討了DCC生成的熱力條件,未來預期結合動力因子以更完整的描述深對流的生成機制,並且探討對流雲生命週期的變化過程,最終反饋予數值參數化方案,作為改進數值天氣預報模式的客觀依據。
摘要(英) Deep convection has great influence on the earth’s radiation budget and hydrologic cycle. South China Sea- Maritime Continent (SCS-MC) is one of the most convective areas in the world. Deep convection in this area interacts with multiscale weather/climate systems and has influence on global climate. However, it remains a great challenge for models to capture the timing, location, and intensity of deep convection. As a result, the aim of this study is to take the advantage of CloudSat and composite ECMWF reanalysis data to investigate general features of DCC and analyze ingredient elements for deep convection, including TPW, LTS, CAPE, T2m, SHF and LHF.
The results suggest that deep convective cores (DCCs) feature apparent diurnal variation on geospatial distribution. Higher probabilities of DCC are on ocean and coastal region in daytime (~1330 LT), but there are more inland DCC in nighttime (~0130 LT). Generally, the occurrence of DCC in nighttime is higher than daytime. The thermodynamic condition in nighttime is not suitable for DCC development. Therefore, DCC in nighttime might be sustained from the other mechanism. On the other hand, vertical structure of DCC shows difference between daytime and nighttime. In the daytime, maximum echo (~20 dBZ) extends from 6 km to 14 km owing to strong convective updraft. In the nighttime, maximum echo extends from 6 km to 12 km only result from relative stable thermodynamic environment.
The analysis of thermodynamic environmental factors in SCS and MC reveal the relationship to each individual factor. There are specific intervals of T2m and LTS that are favorable to DCC. TPW has positive correlation with DCC probability, while CAPE shows less sensitivity to DCC probability. The environment of SCS and MC are unstable all the time, so the increase of CAPE value has little impact on DCC probability. Over the SCS region, all the factors have sensitivity except CAPE. In the contrast, T2m, TPW and SHF have sensitivity to DCC in the MC region.
In this study, thermodynamic factors for DCC development are investigated. We expect to have a combination and intercomparison for thermodynamic and dynamic factors and further analyze the life cycle of deep convection. We look forward to a better understanding of deep convection mechanism, and the results can provide a positive feedback to improve the simulation of cumulus cloud in NWP models.
關鍵字(中) ★ 深對流
★ 熱力環境特徵
★ CloudSat衛載主動式雷達觀測
關鍵字(英) ★ Deep convective core (DCC)
★ characteristic of thermodynamic environment
★ Space-borne CloudSat active observation
論文目次 摘要 I
Abstract III
Table of Contents V
List of Tables VII
List of Figures VIII
List of Abbreviations XI
1. Introduction 1
1.1. Overview 1
1.1.1. Deep Convection 1
1.1.2. Motivation 3
1.1.3. South China Sea-Maritime Continent (SCS-MC) 4
1.2. Literature Review 7
1.3. Objective 10
2. Data and Methodology 11
2.1. Datasets 11
2.1.1. Satellite Data – Cloudsat 11
2.1.2. Re-Analysis Data Set 13
2.2. Methodology 14
2.2.1. Deep Convective Core (DCC) Identification 14
2.2.2. Thermodynamic Parameter 15
3. Results 18
3.1. General Deep Convection Features 18
3.1.1. DCC Occurrence 19
3.1.2. Vertical Structure of DCC 21
3.2. Deep Convection Sensitivity to Thermodynamic Factors 25
3.2.1. Overall Comparison 25
3.2.2. Diurnal Variation 39
3.2.3. Diurnal Land/Ocean Variation 46
4. Conclusion and Future Work 50
Bibliography 54
Appendix 60
參考文獻 Battaglia, A., and C. Simmer, 2008: How Does Multiple Scattering Affect the Spaceborne W-Band Radar Measurements at Ranges Close to and Crossing the Sea-Surface Range? IEEE Transactions on Geoscience and Remote Sensing, 46, 1644-1651.
Cetrone, J., and R. A. Houze, 2009: Anvil clouds of tropical mesoscale convective systems in monsoon regions. Quarterly Journal of the Royal Meteorological Society, 135, 305-317.
Dodson, J. B., D. A. Randall, and K. Suzuki, 2013: Comparison of observed and simulated tropical cumuliform clouds by CloudSat and NICAM. Journal of Geophysical Research: Atmospheres, 118, 1852-1867.
Franklin, C. N., Z. Sun, D. Bi, M. Dix, H. Yan, and A. Bodas-Salcedo, 2013: Evaluation of clouds in ACCESS using the satellite simulator package COSP: Regime-sorted tropical cloud properties. Journal of Geophysical Research: Atmospheres, 118, 6663-6679.
Gettelman, A., M. L. Salby, and F. Sassi, 2002: Distribution and influence of convection in the tropical tropopause region. Journal of Geophysical Research: Atmospheres, 107, ACL 6-1-ACL 6-12.
Hamada, A., Y. Murayama, and Y. N. Takayabu, 2014: Regional Characteristics of Extreme Rainfall Extracted from TRMM PR Measurements. J. Climate, 27, 8151-8169.
Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403–439.
Im, E., C. Wu, and S. L. Durden, 2005: Cloud profiling radar for the CloudSat mission. IEEE Aerospace and Electronic Systems Magazine, 20, 15-18.
Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588–612.
Klein, S. A., and D. L. Hartmann, 1993: The Seasonal Cycle of Low Stratiform Clouds. Journal of Climate, 6, 1587-1606.
Kubar, T. L., D. E. Waliser, and J.-L. Li, 2011: Boundary Layer and Cloud Structure Controls on Tropical Low Cloud Cover Using A-Train Satellite Data and ECMWF Analyses. J. Climate, 24, 194–215. doi: /10.1175/2010JCLI3702.1
Lau, K.-M., and P. H. Chan, 1983: Short-Term Climate Variability and Atmospheric Teleconnections from Satellite-Observed Outgoing Longwave Radiation. Part I: Simultaneous Relationships. Journal of the Atmospheric Sciences, 40, 2735-2750.
Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. Journal of Geophysical Research, 110.
Liu, C., E. J. Zipser, and S. W. Nesbitt, 2007: Global Distribution of Tropical Deep Convection: Different Perspectives from TRMM Infrared and Radar Data. J. Climate, 20, 489-503.
Luo, Z., G. Y. Liu, and G. L. Stephens, 2008: CloudSat adding new insight into tropical penetrating convection. Geophysical Research Letters, 35.
Luo, Z. J., G. Y. Liu, and G. L. Stephens, 2010: Use of A-Train data to estimate convective buoyancy and entrainment rate. Geophysical Research Letters, 37, L09804.
Luo, Z. J., J. Jeyaratnam, S. Iwasaki, H. Takahashi, and R. Anderson, 2014: 6.Convective vertical velocity and cloud internal vertical structure: An A-Train perspective. Geophysical Research Letters, 41, 723-729.
Luo, Y. L., R. Zhang, W. Qian, Z. Luo, and X. Hu, 2011: Intercomparison of deep convection over the Tibetan Plateau–Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Climate, 24, 2164–2177, doi:10.1175/2010JCLI4032.1.
Luo, Y., H. Wang, R. Zhang, W. Qian, and Z. Luo, 2013: Comparison of Rainfall Characteristics and Convective Properties of Monsoon Precipitation Systems over South China and the Yangtze and Huai River Basin. Journal of Climate, 26, 110-132, doi: 10.1175/JCLI-D-12-00100.1.
Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens, 2008: Hydrometeor Detection UsingCloudsat—An Earth-Orbiting 94-GHz Cloud Radar. Journal of Atmospheric and Oceanic Technology, 25, 519-533.
Meehl, G. A., 1987: Tropics and their role in the global climate system, Geogr. J, 153, 21 –36.
Nair, A. K. M., and K. Rajeev, 2014: MultiyearCloudSatandCALIPSOObservations of the Dependence of Cloud Vertical Distribution on Sea Surface Temperature and Tropospheric Dynamics. Journal of Climate, 27, 672-683.
Neale, R., and J. Slingo, 2003: The Maritime Continent and Its Role in the Global Climate: A GCM Study. Journal of Climate, 16, 834-84
Peng, J., H. Zhang, and Z. Li, 2014: Temporal and spatial variations of global deep cloud systems based on CloudSat and CALIPSO satellite observations. Advances in Atmospheric Sciences, 31, 593-603.
Ramage, C. S., 1968: Role of a Tropical “Maritime Continent” in the Atmospheric Circulation1. Monthly Weather Review, 96, 365-370.
Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503–538.
Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360-363.
Sassen, K., S. Matrosov, and J. Campbell, 2007: CloudSat spaceborne 94 GHz radar bright bands in the melting layer: An attenuation-driven upside-down lidar analog. Geophysical Research Letters, 34.
Sherwood, S. C., and A. E. Dessler, 2000: On the control of stratospheric humidity. Geophys. Res. Lett, 27, 2513–2516.
Sherwood, S. C., R. Roca, T. M. Weckwerth, and N. G. Andronova, 2010: Tropospheric water vapor, convection, and climate. Reviews of Geophysics, 48.
Sohn, B. J., M. J. Choi, and J. Ryu, 2015: Explaining darker deep convective clouds over the western Pacific than over tropical continental convective regions. Atmospheric Measurement Techniques, 8, 4573-4585.
Stephens, G. L., and Coauthors, 2002: The Cloudsat Mission and the a-Train. Bulletin of the American Meteorological Society, 83, 1771-1790.
Storer, R. L., S. C. van den Heever, and T. S. L′Ecuyer, 2014: Observations of aerosol-induced convective invigoration in the tropical east Atlantic. Journal of Geophysical Research: Atmospheres, 119, 3963-3975.
Su, H., J. H. Jiang, D. G. Vane, and G. L. Stephens, 2008: Observed vertical structure of tropical oceanic clouds sorted in large-scale regimes. Geophysical Research Letters, 35.
Sud, Y. C., G. K. Walker, and K. M. Lau, 1999: Mechanisms regulating sea-surface temperatures and deep convection in the tropics. Geophysical Research Letters, 26, 1019-1022.
Takahashi, H., and Z. Luo, 2012: Where is the level of neutral buoyancy for deep convection? Geophysical Research Letters, 39.
Takahashi, H., Z. J. Luo, and G. L. Stephens, 2017: Level of neutral buoyancy, deep convective outflow, and convective core: New perspectives based on 5 years of CloudSat data. Journal of Geophysical Research: Atmospheres, 122, 2958-2969.
Wang, Y., and C. Wang, 2015: Features of clouds and convection during the pre- and post-onset periods of the Asian summer monsoon. Theoretical and Applied Climatology, 123, 551-564.
Warner, T. T., 2011: Numerical Weather and Climate Prediction, Cambridge University Press, Cambridge, UK. ISBN: 978-0-521-51389-0. Hardback, 526 PP. Meteorological Applications, 19, E1-E1.
Yang, G.-Y., and J. Slingo, 2001: The Diurnal Cycle in the Tropics. Monthly Weather Review, 129, 784-801.
Yi, M., Y. Fu, P. Liu, and Z. Zheng, 2015: Deep convective clouds over the northern Pacific and their relationship with oceanic cyclones. Advances in Atmospheric Sciences, 32, 821-830.
Young, A. H., J. J. Bates, and J. A. Curry, 2012: Complementary use of passive and active remote sensing for detection of penetrating convection from CloudSat, CALIPSO, and Aqua MODIS. Journal of Geophysical Research: Atmospheres, 117, D13205.
Young, A. H., J. J. Bates, and J. A. Curry, 2013: Application of cloud vertical structure from CloudSat to investigate MODIS-derived cloud properties of cirriform, anvil, and deep convective clouds. Journal of Geophysical Research: Atmospheres, 118, 4689-4699.
Yue, Q., B. H. Kahn, E. J. Fetzer, and J. Teixeira, 2011: Relationship between marine boundary layer clouds and lower tropospheric stability observed by AIRS, CloudSat, and CALIOP. Journal of Geophysical Research, 116.
Yuter, S. E., and R. A. Houze, 1995: Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part II: Frequency Distributions of Vertical Velocity, Reflectivity, and Differential Reflectivity. Monthly Weather Review, 123, 1941-1963.
Zipser, E. J., D. Cecil, C. Liu, S. Nesbitt, and D. Yorty, 2006: Where are the most intense thunderstorms on earth? Bull. Amer. Meteor. Soc, 87, 1057–1071.
指導教授 劉千義(Chian-Yi Liu) 審核日期 2019-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明