博碩士論文 104221009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:54.167.216.239
姓名 梁長雯(Chang-Wen Liang)  查詢紙本館藏   畢業系所 數學系
論文名稱
(A Study of Some Numerical Schemes for Hyperbolic PDE Problems)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation
★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems
★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們將討論一些基本的數值方法來解雙曲線偏微分方程(hyperbolic PDE equations)的問題,對於不同的數值方法分析其數值解的特性,探討各個數值方法的穩定性 (stability)、收斂性 (convergence) 及產生的數值消散作用 (artificial viscosity) 的大小。然而一個雙曲線問題的解若為不連續的,其數值結果的表現通常較為不精確。而the conservation element and solution element method (The CESE method)是一種較新的數值方法,我們比較此數值方法與基本數值方法的結果,說明the CESE method 的好處。
摘要(英) We will discuss some basic numerical methods to solve hyperbolic partial differential equations
problem. We analyze the behavior of its numerical solutions for different numerical
methods and discuss the stability, convergence and size of the resulting artificial viscosity.
If the solution of hyperbolic partial differential equation problem is discontinuous,
the performance of numerical results is usually less accurate. However, the conservation
element and solution element method(The CESE method)is a newer numerical method,
we will compare the results of this numerical method with the basic numerical method to
illustrate the benefits of the CESE method.
關鍵字(中) ★ 雙曲線方程式 關鍵字(英)
論文目次 Tables viii
Figures ix
1 Introduction 1
2 Scalar wave model problem 2
2.1 The linear advection equation 2
2.2 The nonlinear scalar equation 3
3 Numerical schemes 5
3.1 The forward-in-time method 5
3.2 The backward-in-time method 7
3.3 Stability analysis 8
3.4 Domain of dependence 11
3.5 Artificial viscosity 13
4 Vector wave systems 17
4.1 The Lax-Friedrichs method 18
4.2 The Lax-Wendroff method 19
4.3 The CESE method 20
5 Numerical results 24
5.1 The linear equation case 24
5.2 The nonlinear equation case 37
5.3 The Euler equation 46
6 Conclusions 57
References 58
參考文獻 [1] F. D. Lora-Clavijo, J.P. Cruz-Pérez, F. Siddhartha Guzmán, and J.A. González. Exact
solution of the 1D riemann problem in newtonian and relativistic hydrodynamics.
Rev. Mex. Fis., E59:28–50, 2013.
[2] D. A. Anderson, J. C. Tannehill, and It. H. Pletcher. Computational Fluid Mechanics
and Heat Transfer. McGrarv-Hill, 1984.
[3] J. P. Boris and E. S. Oran. Numerical simulation of reactive flow. lsevier, 1987.
[4] Dongsu Ryu. Numerical magnetohydrodynamics in astrophysics: Algorithm and
tests for multi-dimensional flow. Astrophysical Journal, 1995.
[5] Thomas J R Hughes, Tosio Kato, and Jerrold E. Marsden. Well-posed quasi-linear
second-order hyperbolic systems with applications to nonlinear elastodynamics and
general relativity. Archive for Rational Mechanics and Analysis, 63:273–294, 1977.
[6] Michael Dumbser, Ilya Peshkov, Evgeniy Romenski, and Olindo Zanotti. High order
ader schemes for a unified first order hyperbolic formulation of continuum mechanics:
viscous heat-conducting fluids and elastic solids. Journal of Computational Physics,
314:824–862, 2016.
[7] Frederick Bloom. Systems of nonlinear hyperbolic equations associated with problems
of classical electromagnatic theory. Computers and Mathematics with Applications,
11:261–279, 1985.
[8] P. J. Dellar. Dispersive shallow water magnetohydrodynamics. Phys. Plasmas,
10:581–590, 2003.
[9] Clive L. Dym. Principles of Mathematical Modeling. Academic, 1980.
[10] Y.T. Lee. Nonlinear balance laws in traffic flow-a model with lane-changing intensity,
2013.
[11] Culbert B. Laney. Computational Gasdynamics. Cambridge, 1998.
[12] K.W.Morton and D.F.Mayers. Numerical Solution of Partial Differential Equations.
Cambridge, 1994.
[13] Klaus A.Hoffmann and Steve T.Chiang. Computational Fluid Dynamics for Engineers.
Engineering Education System, 1993.
[14] S. C. Chang. The method of space-time conservation element and solution element-a
new approach for solving the Navier-Stokes and Euler equations, 1995.
[15] S. C. Chang. New developments in the method of space-time conservation element
and solution element-applications to the euler and navier-stokes eqations, 1993.
[16] R. Courant, K.O. Friedrichs, and H. Lewy. Über die partiellen differenzengleichungen
der mathematischen physik. Math. Ann., 100:32–74, 1928.
[17] Hans De Sterck and Paul Ullrich. Introduction to computational PDEs. University
of Waterloo, 2009.
[18] Randall J. LeVeque. Numerical methods for conservation laws. Birkhaüser, 1992.
指導教授 黃楓南 審核日期 2017-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明