博碩士論文 104221011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.215.161.19
姓名 陳柏洹(Bo-Huan Chen)  查詢紙本館藏   畢業系所 數學系
論文名稱
(The isotopy classification of contact structures on S3)
相關論文
★ 一個在T*RP2上的單調拉格朗日環面★ Mirror Symmetry and The Quintic Model
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由Lutz、Martinet及Eliashberg的工作,我們可得知:若以同痕方式進行分類,在三維球面
上的切觸結構已經被分類完成。
本文將會藉由half及full Lutz twist方法,來為每一個同痕類找出更為具體且可算的代表元
素。
摘要(英) By the works of Lutz, Martinet and Eliashberg, we have known that the isotopy classes of
contact structures on S^3 have been completely classified.
In this thesis, we will find a representative for each class in a more explicit and computable
form via the half and full Lutz twist.
關鍵字(中) ★ 微分幾何
★ 切觸幾何
關鍵字(英) ★ Differential geometry
★ Contact geometry
論文目次 摘要............................................................................................................................................ i
Abstract...................................................................................................................................... iii
目錄............................................................................................................................................ v
一、Introduction .......................................................................................................... 1
二、Contact Topology.................................................................................................. 3
三、Standard Contact Structure on S3........................................................................ 7
四、Lutz Twist............................................................................................................. 9
五、Basic Obstruction Theory ..................................................................................... 13
5.1 The Obstruction Cocycle of Maps . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 The Obstruction Cocycle of Homotopies . . . . . . . . . . . . . . . . . . . . . 13
5.3 Eilenberg-MacLane Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 On a Cell Decomposable 3-Manifold . . . . . . . . . . . . . . . . . . . . . . . 16
六、Cobordisms of Framed Links ................................................................................ 19
6.1 Definition of Framing and Cobordism . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Constructing Framed Cobordism from Oriented Cobordism . . . . . . . . . . 20
6.3 Relation Between Obstruction and Cobordism . . . . . . . . . . . . . . . . . . 20
七、Construction ......................................................................................................... 23
7.1 One Generator in H3(S3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 The Positive Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.3 The Other Generator and the Negative Classes . . . . . . . . . . . . . . . . . 28
Bibliography.................................................................................................................................... 31
參考文獻 [1] Hansjorg Geiges, An Introduction to Contact Topology, Cambridge University Press, (2008).
[2] Yakov Eliashberg, Classification of overtwisted contact structures on 3-manifolds, Invent.
Math. 98, 623-637 (1989).
[3] Robert Lutz, Sur quelques proprietes des formes differentielles en dimension trois, Universite
de Strasbourg, (1971).
[4] James F. Davis and Paul Kirk, Lecture Notes in Algebraic Topology, American Mathematical
Society, Graduate studies in mathematics ; 35, (2001).
[5] Loring W. Tu, An Introduction to Manifolds, Springer, Second Edition, (2011).
[6] Allen Hatcher, Algebraic Topology, Cambridge University Press, (2002).
指導教授 姚美琳 審核日期 2018-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明