博碩士論文 104221603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.231.230.177
姓名 諾斯拉(Nuzla Af′idatur Robbaniyyah)  查詢紙本館藏   畢業系所 數學系
論文名稱 應用Petviashvili方法求雙組份非線性薛丁格方程組的駐波解
(The Numerical Approximation of Stationary Wave Solutions for Two-Component System of Nonlinear Schrodinger Equations by Using Generalization Petviashvili Method)
相關論文
★ 薛丁格方程式上直立波解的分類。★ Conformality of Planar Parameterization for Single Boundary Triangulated Surface Mesh
★ 一些線性矩陣方程其平滑及週期的最小 l_2-解之探討★ 關於漢米爾頓矩陣的某些平滑性分解
★ 在N維實數域之雙調和微分方程★ 一維動態系統其週期解之研究
★ 一些延滯方程其週期解之探討★ On the Blow-up solutions of Biharmonic Equation on a ball
★ 雙調和微分方程其正整域解的存在性與不存在性之探討★ 高階橢圓偏微分方程解的存在性及其行為之研究
★ 有絲分裂中染色體運動之動態分析★ 非線性橢圓方程及系統中解的唯一性和結構性之探討
★ On the Positive Solution for Grad-Shafranov Equation★ 關於三物種間之高流動性Lotka-Vollterra競爭擴散系統的波形極限行為
★ 非線性橢圓型偏微分方程系統之解結構分析★ On the study of the Golden-Thompson inequality
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 考慮這樣的穩態的非線性波動方程式:$Mu+u^p=0$,其中微分算子M是正定自伴算子,p是常數。只有一個方程式時,數值上一般可以用Petviashvili method求出孤立波解。此處我們的感興趣的問題是一些二維的雙組份非線性薛丁格方程組,我們將Petviashvili method推廣到此方程組,並得到數值上的收斂。
摘要(英) The Petviashvili method is a numerical method for obtaining fundamental solitary wave solutions of stationary scalar nonlinear wave equations with-power-law nonlinearity: ?Mu + up = 0, where M is a positive de nite and self-adjoint operator, and p is constant. Due to the case is system of solitary nonlinear wave equations, we generalize the Petviashvili method. We apply this generalized method for two-component system of nonlinear Schrodinger equations (NLSE) for
2-D. From the numerical results, if the spectral radius of the numerical scheme for system is less than one, then we get quick convergence of the numerical method.
關鍵字(中) ★ 非线性薛定er方程
★ 静止波
關鍵字(英) ★ Nonlinear Schrodinger Equations
★ Stationary Wave
★ Petviashvili Method
論文目次 Contents
X i
Abstract ii
Acknowledgement iii
Contents iv
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Petviashvili Method . . . . . . . . . . . . . . . . . . . . . 3
2 Generalized Petviashvili Method and Its Convergence 6
2.1 Generalized Petviashvili Method for Single Equation . . 6
2.2 Generalized Petviashvili Method for System Equations . 10
2.3 Convergence of Numerical Scheme . . . . . . . . . . . . . 15
3 Numerical Computation Results and Discussion 18
3.1 Two-Component System of Nonlinear Schrodinger
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Two-Component System of Nonlinear Schrodinger
Equations with Epsilon Parameter (") . . . . . . . . . . . 22
4 Concluding Remarks 25
References 26
參考文獻 References
[1] C. Xianjin, T. C. Lin, and J. Wei, Blowup and solitary wave solutions
with ring pro les of two-component nonlinear Schrodinger
system, Physica D 239 (2010) 613-626.
[2] D. E. Pelinovsky and Y. A. Stepanyants, Convergence of Petviashvili′s
iteration method for numerical approximation of stationary
solutions of nonlinear wave equations, SIAM J. Numer. Anal.
42 (2004), 1110-1127.
[3] I. Bakirtas, Vortex structures in saturable media, INTECH, Istanbul.
[4] J. J. Garcia Rippoll and V. M. Perez, Optimizing Schrodinger functionals
using Sobolev gradients: applications to quantum mechanics
and nonlinear optics, SIAM J. Sci. Comput. 23 (2001), 1316-1334.
[5] J. Wei and Y. Wei, Uniqueness of positive solutions to some coupled
nonlinear Schrodinger equations, Communication on Pure and
Applied Analysis 11 (2012).
[6] J. Yang, T. I. Lakoba, Convergence and acceleration of imaginarytime
evolution methods for solitary waves in arbitrary spatial dimensions,
Available from:https://arxiv.org(preprintnlin.PS/07113434).
[7] N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a
nite background, Phys. Rev. Lett. 82 (1-4) (1999) 2661.
[8] T. C. Lin and J. Wei, Zero solitary and self-similar solutions of
two-component system of nonlinear Schrodinger equations, Physica
D. 220 (2006), 99-115.
[9] T. I. Lakoba, Conjugate gradient method for nding fundamental
solitary wave, Physica D. 220 (2009), 2308-2330.
[10] T. I. Lakoba and J. Yang, Accelerated imaginary-time evolution
methods for the computational of solitary waves, J. Comput. Phys.
226 (2007), 265-292.
26
[11] T. I. Lakoba and J. Yang, A generalized Petviashvili iteration
method for scalar and vector Hamiltonian equations with arbitrary
form of nonlinearity, J. Comput. Phys. 226 (2007), 1668-1692.
[12] V. Hutson, V. J. S. Pym, and M. J. Cloud, Applications of Functional
Analysis and Operator Theory, Second-Edition, Elsevier B.
V, Amsterdam, 2005.
[13] V. I. Petviashvili, Equation of an extraordinary soliton, Plasma
Physics. 2 (1976), 257-258.
[14] V. I. Petviashvili and O. V. Pokotelov, Solitary waves in plasmas
and in the atmosphere, Gordon and Breach, Philadelphia, 1992.
[15] V. S. Shchenovich and S. B. Cavalcanti,
Rayleigh functional for nonlinear systems, Available
from:http://www.arxiv.org(preprintnlin.PS/0411033).
[16] W. Bao, Q. Du, Computing the ground state solution of Bose-
Einstein condensates by a normalized gradient
ow, SIAM J. Comput.
25(2004), 1674-1697.
27
指導教授 陳建隆(Jann-Long Chern) 審核日期 2017-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明