博碩士論文 104222001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.137.220.120
姓名 林晉賢(Ching-Hsien Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱 以在鈣鈦礦層旋轉塗佈過程中界面活性劑輔助奈米顆粒形成來製備高效能鹵化物鈣鈦礦發光二極體
(Fabrication of efficient halide perovskite light-emitting diode by surfactant-assisted formation of nanometer-sized grains during spin coating of perovskite layer)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文是在研究鹵化物鈣鈦礦發光二極體(halide perovskite light emitting diode, PeLED)。近年來鹵化鈣鈦礦材料在光電領域迅速發展,在太陽能電池(solar cells, SCs)領域其光電轉換效率達22%以上,而在發光二極體(light emitting diodes, LEDs)領域,它的外部量子效率可達11%,並有持續上升的趨勢。鹵化物鈣鈦礦本身具有高光致發光效率、單色性、涵蓋可見光範圍的發光波長可調性,可使用溶液製程,降低製程成本,是未來顯示技術的新星。

在發光二極體的應用中,當發光層薄膜內的材料結晶顆粒愈小表示有更佳的輻射複合效率。本論文先使用一般常見的旋轉塗佈併用反溶劑法(anti-solvent method)製程,重現主要參考文獻之結果。此文獻是在MAPbBr3前驅物溶液中加入溴化丁基胺(BABr)界面活性劑(surfactant),使得鹵化鈣鈦礦在旋轉塗佈的過程中可以自發形成量子點(quantum dot)堆疊的薄膜,此量子點是鹵化物鈣鈦礦晶體外面包覆一層長鏈的界面活性劑,稱表面鈍化(surface passivation),他們改變界面活性劑的量以降低量子點大小,提升發光效率。

本論文第二部分則是利用鹵化物鈣鈦礦在特定溶劑中的反溶解率(inverse solubility)特性,在旋轉塗佈的過程中,使用雷射來加熱基板,使旋轉塗佈中的薄膜溶液溶解度瞬間下降,在整片薄膜中瞬間誘發成核(nucleation),成核數量愈多表示薄膜中量子點可成長(growth)的大小將會愈小。雷射加熱對材料的熱穩定性要求較高,所以材料改用全無機的鹵化鈣鈦礦(CsPbBr3)。

實驗第一部分結果得到與參考文獻相同的趨勢,但唯因發光二極體元件電洞傳輸層的設計差異,導致薄膜旋塗均勻性與對電子的阻隔能力較差,得到較低的發光效率,外部量子效率0.5%。第二部份結果顯示在旋轉塗佈中利用溶液的反溶解率特性,使用雷射加熱誘發成核的原理是正確可行的,並且此方法製做的發光二極體的發光強度是第一部份結果的2倍,可見極具發展潛力。
摘要(英) The thesis is research of halide perovskite light-emitting diode(PeLED). Halide perovskites have recently emerged as promising for optoelectronic applications. In the field of the solar cells, its power conversion efficiency had been approached to 22%, and for the light-emitting diodes, its external quantum efficiency can higher than 11%. Halide perovskites are the new star of future display technology, they have the properties of high photoluminescence efficiency, high-colour purity, wide colour tunability and feasibility of solution-processing for low costs.

In the application of light-emitting diodes, the smaller crystalline particles in the light emitting layer have the better radiative recombination efficiency. In the first part of our experiments, we use the spin coating with the anti-solvent method to reproduce the results of the main reference. They add the surfactant of butylammonium bromide (BABr) to the perovskite (MAPbBr3) precursor solution to form a quantum dot stacked film by anti-solvent treatment via spontaneous reaction. The surface of the quantum dot is passivated by the long-chain surfactant, that is called surface passivation. They varied the ratio of BABr and MAPbBr3 to decrease the dot size.

The second part of the experiment is to apply the inverse solubility characteristics of the halide perovskite in a specific solvent. In the process of spin coating, the substrate is heated by a laser to induce nucleation of nano-crystalline in the entire film instantaneously via decreasing the solubility instantly. The more nucleus form, the smaller size of crystalline grow. Laser heating requires a high thermal stability of the material, so the material is replaced with an all-inorganic halide perovskite (CsPbBr3).

We reproduced the same trend as the results of the reference, by varied the amount of surfactant added. However, due to the design difference of the hole transport layer of the light-emitting diode, we got the uniformity film with pinholes and bad electron blocking effect, which is resulting in the external quantum efficiency of 0.5%. The second part of the results shows that the principle of using Laser heating to induce nucleation during spin coating via inverse solubility is correct. The luminance of the LED produced by this method is higher 2 times than the first part of the experiment at the same working voltage, showing its huge development potential.
關鍵字(中) ★ 發光二極體
★ 鹵化物鈣鈦礦
★ 界面活性劑
★ 雷射加熱
★ 旋轉塗佈
關鍵字(英) ★ light-emitting diode
★ halide perovskite
★ surfactant
★ laser heating
★ spin coating
論文目次 摘要...............................................................i
ABSTRACT..........................................................ii
誌謝..............................................................iv
目錄...............................................................v
圖目錄..........................................................viii
表目錄...........................................................xii
一、 緒論 ..............................................1
1-1 前言 ..............................................1
1-2 發光二極體的發展歷史...............................2
1-3 鹵化物鈣鈦礦發光二極體.............................5
1-3-1 發光二極體的工作原理...............................5
1-3-2 發光效能...........................................6
1-3-3 材料特性 ..........................................8
1-3-4 過去工作的里程碑..................................10
1-4 研究動機..........................................11
二、 理論基礎..........................................14
2-1 旋轉塗佈技術......................................14
2-1-1 旋轉塗佈原理 .....................................16
2-2 旋轉塗佈併用反溶劑法..............................16
2-2-1 實驗參數..........................................16
2-3 旋轉塗佈併用雷射加熱..............................17
2-3-1 雷射加熱..........................................17
2-3-2 實驗參數..........................................17
三、 實驗材料與方法....................................19
3-1 材料..............................................19
3-2 前驅溶液配製......................................21
3-3 實驗架設..........................................22
3-3-1 氮氣手套箱與光路架設..............................22
3-3-2 雷射光源..........................................24
3-3-3 自製旋轉塗佈機....................................25
3-4 發光二極體元件製程................................28
3-5 診斷工具..........................................30
3-5-1 紅外線熱像儀......................................30
3-5-2 紫外線手電筒..........................................31
3-5-3 X光繞射儀.........................................32
3-5-4 掃描式電子顯微鏡..................................32
3-5-5 發光二極體效率量測站..............................33
四、 實驗結果與討論....................................37
4-1 反溶劑法-改變BABr與MAPbBr3之比例..................37
4-1-1 發光二極體元件效率................................37
4-1-2 發光層薄膜品質....................................38
4-1-3 實驗小結..........................................42
4-2 雷射加熱法-改變BABr與MAPbBr3之比例與雷射強度......43
4-1-1 發光二極體元件效率................................43
4-1-2 實驗小結..........................................45
4-3 雷射加熱法-改變BABr與CsPbBr3之比例與雷射強度......46
4-3-1 發光二極體元件效率................................47
4-3-2 發光層薄膜品質....................................48
4-3-3 實驗小結..........................................50
4-4 雷射加熱法-改變對CsPbBr3的加熱時機................50
4-4-1 發光層薄膜品質....................................51
4-4-2 實驗小結..........................................51
五、 結論與未來展望....................................55
5-1 結論..............................................55
5-2 未來工作..........................................56
參考文獻..........................................................57
參考文獻 [1]M. Cole, H. Clayton and K. Martin, ``Solid-State Lighting: The New Normal in Lighting.′′, IEEE Transactions on Industry Applications, Vol 51, pp. 109-119, January 2015.

[2]WIKIPEDIA:Halogen lamp。2018年8月10日,取自url{https://en.wikipedia.org/wiki/Halogen_lamp}。

[3]WIKIPEDIA:金屬鹵化物燈。2018年8月10日,取自url {https://zh.wikipedia.org/wiki/%E9%87%91%E5%B1%AC%E9%B9%B5%E5%8C%96%E7%89%A9%E7%87%88}。

[4]WIKIPEDIA:省電燈泡。2018年8月10日,取自url {https://zh.wikipedia.org/wiki/%E4%B8%80%E4%BD%93%E5%BC%8F%E8%8D%A7%E5%85%89%E7%81%AF}。

[5]WIKIPEDIA:藍光LED。2018年8月10日,取自url {https://zh.wikipedia.org/wiki/%E8%97%8D%E5%85%89LED}。

[6]E. Fred Schubert, underline {LIGHT-EMITTING DIODES.}, Cambridge University Press., New York, 2003.

[7]M. George Craford, et al., ``50th Anniversary of the Light-Emitting Diode (LED): An Ultimate Lamp.′′, Proceedings of the IEEE, Vol 101, pp. 2154-2157, October 2013.

[8]James R. Sheats, et al., ``Organic Electroluminescent Devices.′′, Science, Vol 273, pp. 884-888, August 1996.

[9]Yi-Lu Chang, underline {Efficient Organic Light-Emitting Diodes (OLEDs)}, PAN STANFORD, U.S., 2016.

[10]NREL:NREL best research cell efficiencies。2018年5月10日,取自url{ https://www.nrel.gov/pv/}。

[11]Wei Deng, et al., ``Organic–inorganic hybrid perovskite quantum dots for light-emitting diodes.′′, J. Mater. Chem. C, Vol 6, pp. 4831-4841, April 2018.

[12]Sjoerd A. Veldhuis, et al., ``Perovskite Materials for Light-Emitting Diodes and Lasers.′′, Advanced Materials, Vol 28, pp. 6804-6834, May 2016.

[13]Zhifeng Shi, Xinjian Li and Chongxin Shan, ``The emergence of perovskite solar cells.′′, Nature Photonics, Vol 8, pp. 506-514, June 2014.

[14]Dmitry N. Dirin, et al., ``Solution-Grown CsPbBr3 Perovskite Single Crystals for Photon Detection.′′, Chemistry of materials, Vol 28, pp. 8470-8474, November 2016.

[15]Guangru Li, Michael Price and Felix Deschler, ``Research Update: Challenges for high-efficiency hybrid lead-halide perovskite LEDs and the path towards electrically pumped lasing.′′, APL MATERIALS, Vol 4, pp. 091507, September 2016.

[16]Zhengguo Xiao, et al., ``Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites.′′, Nature Photonics, Vol 11, pp. 108-115, January 2017.

[17]Jianhai Li, et al., ``50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control.′′, Advanced Materials, Vol 29, pp. 1603885, November 2016.

[18]Liuqi Zhang, et al., ``Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes.′′, Nature Communications, Vol 8, pp. 15640, June 2017.

[19]Naresh K. Kumawat, Dhritiman Gupta and Dinesh Kabra, ``Recent Advances in Metal Halide-Based Perovskite Light-Emitting Diodes.′′, Energy Technol., Vol 5, pp. 1734-1749, August 2017.

[20]Loredana Protesescu, et al., ``Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut.′′, Nano Lett., Vol 15, pp. 3692-3696, January 2015.

[21]Jizhong Song, et al., ``Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3).′′, Adv. Mater., Vol 27, pp. 7162-7167, October 2015.

[22]Zhifeng Shi, Xinjian Li and Chongxin Shan:Perovskite Quantum Dot Light-Emitting Diodes。2018年8月10日,取自url{https://www.intechopen.com/books/quantum-dot-based-light-emitting-diodes/perovskite-quantum-dot-light-emitting-diodes}。

[23]Schneller, T., et al., underline {Chemical Solution Deposition of} underline {Functional Oxide Thin Films.}, Springer-Verlag Wien, Wien, 2013.

[24]M.D. Tyona, ``A theoritical study on spin coating technique.′′, Advances in Materials Research, Vol 2, pp. 195-208, April 2013.

[25]Maria Konstantakou, ``Anti-Solvent Crystallization Strategies for Highly Efficient Perovskite Solar Cells.′′, crystal, Vol 7, pp. 291, September 2017.

[26]Taewoo Jeon, et al., ``Laser Crystallization of Organic?Inorganic Hybrid Perovskite Solar Cells.′′, ASC Nano., Vol 10, pp. 7907-7914, July 2016.

[27]D. J. Taylor and Dunbar P. Birnie, III,``A Case Study in Striation Prevention by Targeted Formulation Adjustment: Aluminum Titanate Sol-Gel Coatings′′, Chem. Mater., Vol 14, pp. 1488-1492, March 2002.

[28]Eric Moyen, et al., ``Ligand removal and photo-activation of CsPbBr3 quantum dots for enhanced optoelectronic devices.′′, Nanoscale, Vol 10, pp. 8591, March 2018.

[29]Samuel W. Eaton, et al., ``Lasing in robust cesium lead halide perovskite nanowires.′′, PNAS, Vol 113, pp. 1993-1998, February 2016.
指導教授 陳賜原 林皓武(Szu-yuan Chen Hao-Wu Lin) 審核日期 2018-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明