博碩士論文 104222005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.119.131.178
姓名 黃昭文(Zhao-Wen Huang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Analytic derivation for spin-transfer properties in magnetic tunnel junctions)
相關論文
★ Stretching effect on the spin transport properties of single molecular junctions: A first-principle study★ First-principles study in wurtzite InN bulk, thin film, and nanobelt
★ The interfacial effect on spin-transfer torque in single molecular magnetic junctions: A first-principles study★ Spin transport calculation for thiol-ended single-molecule magnetic junction
★ Combined first-principles and tight-binding Hamiltonian study of Fe-MgO-Fe magnetic tunnel junctions★ Anchoring Effect on Spin Transport in Amine-Ended Single-Molecule Magnetic Junctions: A First-Principles Study
★ Simulation for Cu-platted Front Side Metallization of Si-based Solar Cell★ 利用單能階緊密鍵結模型計算磁性穿隧接合的自旋傳輸特性
★ Electronic and Spin Transport Properties of Fe/MgO/Fe Magnetic Tunnel Junction: Combined First-Principles Calculation and TB-NEGF Method★ First-principles study in structural and elec-tronic properties of FeBaTiO3Fe multiferroic tunneling junction
★ Effect of contact geometry on the spin transfer calculation in amine-ended single-molecule magnetic junctions★ Spin Transport Properties in Magnetic Heterojunctions: Analytical derivation in Green’s function and Multi-reflection process
★ Modification of Distributional Exact Diagonalization Approach for Single Impurity Anderson Model★ Strain-Induced Magnetic-Nonmagnetic Transition in PtSe2 Nanoribbon: A First-Principles Study
★ 具電阻切換行為之氧化鋁磁性穿隧接面中低頻雜訊與傳輸機制研究★ Understanding Oscillatory Domain Wall Motion via Spin Waves Theory
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於磁性穿隧接合(magnetic tunnel junctions),其磁性狀態的控
制可分別藉由外加磁場造成穿隧磁組效應(tunnel magnetoresistance)或是以自旋極化電流引發自旋傳輸矩(spin-transfer torque)調控。在穿隧磁組效應的推導中,我們藉由結合Brinkman′s model 以及Simmons′method 來計算在低電壓之下,電流對於電壓的曲線以及隧磁組效應的表達式。而在自旋傳輸矩的推導中,對於單層或是三層絕緣體的磁性穿隧接合,其中間材料可為普通絕緣體或是spin-filter 材料,我們採用tight-binding model 以及Keldysh formalism,我們分別得出 field-like spin torque以及net spin-transfer torque 所適用的general expression。經由數學推導,在spin-filter 為基底的三層磁性穿隧接合FM/I/SF/I/FM MTJ 中,我們發現其 general expression 有額外的項,而其為在三層絕緣體內部的多重反射所造成。因此藉由穿隧磁組效應和自旋傳輸矩的解析式推導來建立多層材料性質與自旋傳輸特性之間的關連,並提供簡單的方向來解釋複雜磁性穿隧接合的實驗結果。
摘要(英) For magnetic tunnel junctions (MTJs), where the magnetic state can be controlled either by an external magnetic field via the tunnel magnetoresistance (TMR) effect or by a spin-polarized current to induce the spin-transfer torque effect. In the derivation of TMR effect, we combine the Brinkman′s model and the Simmons′ method to calculate the current density-voltage curve and the expression of TMR at low bias. In the derivation of spin-transfer torque effect, we employ the tight-binding model with the Keldysh formalism to obtain the general expressions for field-like spin torque and spin-transfer torque, in the single- and triple-barrier-based MTJs, where the central barrier can be chosen by insulting (I) or spin-filter (SF) materials. For SF-based FM/I/SF/I/FM MTJ, the general expression of field-like spin torque has additional terms originated from the multi-reflection processes inside the triple-barrier. These analytical derivations of TMR spin-transfer torque effects reveal the relation between material properties and the spin transport properties of MTJs with multi-barriers, which provide simple guidelines to explain the experimental results in complicated MTJs.
關鍵字(中) ★ 自旋傳輸 關鍵字(英) ★ spin-transfer
★ Brinkman′s model
★ TMR
★ spin-transfer torque
★ general expression
論文目次 摘要 .................................................. i
Abstract ............................................. ii
List ................................................ iii
List of figures ...................................... iv
1 Introduction ........................................ 1
2 Background .......................................... 3
2.1 Tunneling current density ......................... 3
2.1.1 Review of Simmons′ method ....................... 3
2.1.2 Review of Brinkman′s model ...................... 5
2.2 Bias dependence of TMR ............................ 7
2.3 Green′s function .................................. 8
2.4 Spin-transfer torque and spin current density ..... 9
3 Brinkman′s model and bias dependence of TMR ........ 12
3.1 Analytic method of Brinkman′s model .............. 12
3.2 Brinkman′s model for triple-barriers tunnel junction ...................................................... 13
3.3 Bias dependence of TMR ........................... 14
3.4 Discuss .......................................... 17
4 Spin-transfer torque for single-barrier FM/I/FM tunnel
junction ............................................. 18
4.1 Keldysh Green′s function ......................... 18
4.2 Spin-transfer torque for the magnetization of right
FM electrode rotated by θR ........................... 21
4.3 Spin-transfer torque for the magnetization of left FM
electrode rotated by θL .............................. 25
4.4 Spin-transfer torque for the magnetization of spin-
filter rotated by θSF ................................ 28
4.5 Spin-transfer torque for the magnetization of spin-
filter and right FM electrode rotated by θSF and θR,
respectively ......................................... 30
5 Spin-transfer torque for triple-barriers FM/I/SF/I/FM
tunnel junction ...................................... 34
5.1 Keldysh Green′s function for triple-barriers magnetic
tunnel junction ...................................... 34
5.2 Paths choose of Gbb .............................. 36
5.3 Spin-transfer torque for the magnetization of right
FM electrode rotated by angle θR ..................... 37
6 Conclusion ......................................... 41
Reference ............................................ 42
參考文獻 [1] I. Zutic, J. Fabian, S. D. Sarma, and S. Das, Rev. Mod. Phys. 76,323 (2004).
[2] G.-X. Miao, M. Munzenberg, and J. S. Moodera, Rep. Prog. Phys.74, 036501 (2011).
[3] M. Julliere, Phys. Lett. 54A, 225 (1975).
[4] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M.Samant, and S. -H. Yang, Nature Mater. 3, 862 (2004).
[5] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando,Nature Mater. 3, 868 (2004).
[6] J. C. Slonczewski, Phys. Rev. B 39, 6995 (1989).
[7] L. Berger, Phys. Rev. B 54, 9353 (1996).
[8] H. Kubota, A. Fukushima, K. Yakushiji, T. Nagahama, S. Yuasa,K. Ando, H. Maehara, Y. Nagamine, K. Tsunekawa, D. D.Djayaprawira, N. Watanabe, and Y. Suzuki, Nature Phys. 4, 37(2008).
[9] C. Wang, Y.-T. Cui, J. A. Katine, R. A. Buhrman, and D. C.Ralph, Nature Phys. 7, 496 (2011).
[10] Y.-H. Tang, Nicholas Kioussis, Alan Kalitsov, W. H. Butler, andRoberto Car, Phys. Rev. B 81, 054437 (2010).
[11] John G. Simmons, J. Appl. Phys. 34, 1793 (1963).
[12] W. F. Brinkman, R. C. Dynes, and J. M. Rowell, J. Appl. Phys.41, 1915(1970).
[13] C Caroli, R Combescot, D Lederer, P Nozieres and D Saint-James,J. Phys. C: Solid St. Phys., Vol. 4, p916(1971).
[14] Alessandro Cresti, Riccardo Farchioni, and Giuseppe Grosso, Phys.Rev. B 68, (2003).
[15] M. D. Stiles, Phys. Rev. B 66, 014407 (2002).
指導教授 唐毓慧(Yu-Hui Yang) 審核日期 2017-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明