博碩士論文 104222007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.144.17.45
姓名 柳智方(Jr-Fang Liou)  查詢紙本館藏   畢業系所 物理學系
論文名稱 考慮受激非彈性散射下脈衝光纖雷射放大器之最大可擷取 能量的數值模擬研究
(Numerical Study of Maximum Extractable Energy from High Power Pulsed Fiber Laser Amplifier considering Stimulated Inelastic Scattering)
相關論文
★ 一維羅倫茲電漿粒子模擬的動力學特性★ 透過高頻電磁波加速電子來間接加速質子的數值模擬研究
★ 雷射波形對相位穩定質子加速器運作的影響★ 雷射與薄膜作用產生高能質子束之模擬與理論研究
★ 外部反射線路對於磁旋返波振盪器影響之模擬研究★ 利用強場電磁波產生高能質子束的數值模擬研究
★ 考慮受激拉曼散射下多模光纖脈衝雷射放大器之最大可擷取能量的數值模擬研究★ 空間電荷極限電流密度之理論模擬研究
★ 碰撞式粒子網格模擬法之離散粒子效應對電漿波衰減的影響★ 雙脈衝雷射產生錫電漿極紫外光光源之數值研究
★ 雷射驅動電漿光譜和撞性電漿的動態行為之數值研究–應用於雷射生成錫電漿極紫外光光源★ 雷射激發錫電漿產生極紫外光之頻譜分析
★ 齊次平衡解析方法在求解非線性偏微分方程式的適用性分析★ 雷射電漿電子加速器之模擬研究
★ K頻段高均勻度微波材料處理系統之模擬研究與實用驗證★ 雷射電漿質子加速機制之比較研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用數值模擬的方法研究高功率脈衝雷射中,在已經抑制受激
拉曼散射(stimulated Raman scattering)的情況下,研究窄線寬脈衝下受激布里淵散射(stimulated Brillouin scattering)對於最大可擷取能量的影響。
在此數值研究中,我們建構了包含受激拉曼散射與受激布里淵散射的
一維速率-傳輸方程式(rate-propagation equation)的數值模型,以模擬的方式,發現在脈衝線寬為 0.02 奈米的情況下,即使抑制了受激拉曼散射,仍然會有部分的能量轉移到受激布里淵散射上。對於需要使用窄線寬脈衝的實驗而言,所輸出的能量勢必受到受激布里淵效應的影響,本論文給出了在脈衝線寬為 0.02 奈米的情況下,改變脈衝重複率與光纖長度所得到的最大可擷取能量,並得出不同脈衝線寬下,以改變光纖長度抑制受激布里淵散射的最大可擷取能量。
此研究呈現了高功率光纖雷射脈衝放大器最佳化的量化參數條件。研
究結果可直接用在實驗上設計且優化高功率、高能量脈衝光纖雷射放大器。另一方面,此光纖雷射脈衝放大器數值模型,未來可進一步加入多橫模及其他不同的非線性效應,用於研究光纖中能量頻譜展寬的研究。
摘要(英) A numerical study of maximum extractable energy from high power pulsed fiber laser amplifier with considerations of stimulated Raman scattering(SRS) and stimulated Brillouin scattering(SBS) is presented. Based on rate-propagation equations, a one-dimensional convection code is constructed for calculating the maximum extractable energy in fiber laser amplifiers. In the thesis, we extended the numerical model, which is based on rate-propagation equation, to study the maximum extractable energy in fiber laser amplifiers. Simulation results show
that even the SRS is suppressed, A part of energy turns into SBS when linewidth of signal is 0.02 nm. For those experiments need to fix linewidth of signal, the output energy must be affected by SBS. We get the maximum extractable energy by changing repetition rate of signal and fiber length with 0.02 nm linewidth of signal, and get maximum extractable energy in different linewidth of signal. The numerical model used in the study can be applied to study the nonlinear effects and the spectral broadening in high power pulsed fiber laser amplifier and provide experimental designs of a practical high-power and high-energy pulsed fiber amplifier.
關鍵字(中) ★ 受激非彈性散射
★ 數值模擬
★ 光纖雷射放大器
關鍵字(英) ★ Stimulated Inelastic Scattering
★ Numerical Study
★ Fiber Laser Amplifier
論文目次 摘要 ............................................................................................................. i
Abstract ...................................................................................................... ii
致謝 ........................................................................................................... iii
圖目錄 ........................................................................................................ v
第一章-緒論 ............................................................................................ 1
1.1 光纖放大器的歷史 ............................................................................... 1
1.2 動機 ....................................................................................................... 2
第二章-受激非彈性散射理論與數值模型 ............................................ 4
2.1 光纖模型簡介與光纖波導電磁場分析 .............................................. 4
2.2 受激非彈性散射理論 ........................................................................... 6
2.3 拉曼及布里淵閾值 ............................................................................... 8
2.4 考慮非彈性散射之摻鐿光纖數值模型 ............................................. 10
第三章-模擬結果 .................................................................................. 19
3.1 在抑制受激拉曼散射的情況下考慮受激布里淵對最大可擷取能量
的影響 ................................................................................................. 19
3.2 改變脈衝重複率與光纖長度抑制受激布里淵效應 ......................... 25
第四章-結論與未來展望 ...................................................................... 34
參考文獻 .................................................................................................. 35
附錄 A ...................................................................................................... 37
附錄 B ...................................................................................................... 38
參考文獻 35
參考文獻
[1] Charles J. Koester and Elias Snitzer, “Amplification in a Fiber Laser”, Applied
Optics, Vol. 3, Issue 10, pp. 1182-1186, 1964.
[2] K. C. Kao and G. A. Hockham, “Dielectric Fiber Surface Waveguide for
Optical Frequencies,” Proc. IEE, Vol. 113, pp. 1151-1158, (1966.
[3] E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, “Double-
clad, offset core Nd fiber laser,” in Optical Fiber Sensors, 1998 OSA Technical
Digest Series (Optical Society of America, 1998, paper PD5.
[4] Y . Wang and H. Po, “Dynamic characteristics of double-clad fiber amplifiers
for high-power pulse amplification,” J. Lightwave Technol. 21, 2262–2270,
2003.
[5] W. P. Urquhart, et al., “Effective core area for stimulated Raman scattering in
single-mode optical fibers,” Proc. IEEE, vol. 132, pp. 201–204, 1985.
[6] Y. Wang, “Dynamics of stimulated Raman scattering in double-clad fiber pulse
amplifiers,” IEEE J. Quantum Electron., vol. 41, no. 6, pp. 779–788, 2005.
[7] Z. Zhang, et al., “Numerical analysis of stimulated inelastic scatterings in
ytterbium-doped double-clad ?ber ampli?er with multi-ns-duration and multi-
hundred-kW peak-power output,” Optics Communications 282 1186–1190,
2009.
[8] Y. Sintov, et al. “Extractable energy from ytterbium-doped high-energy pulsed
fiber amplifiers and lasers,” J. Opt. Soc. Am. B 23, 218–230 ,2006.
[9] Alejandro L. “Garcia, Numerical Methods for Physics 2 nd ”, 2000.
[10] C. V. Raman, Indian J. Phys. 2, 387, 1928.
[11] R. G. Smith, “Optical power handling capacity of low loss optical fibers as
determined by Stimulated Raman and Brillouin Scattering”Appl. Opt 11,
2489, 1972.
[12] G. P. Agrawal, “Nonlinear Fiber Optics 5 th ”, Academic, 2013.
[13] Paschotta R, Nilsson J, Tropper A.C. etc., Ytterbium-doped fiber amplifier J,
IEEE Journal of Quantum Electronics, Vol. 33(7), 1049-1056., 1997.
[14] R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, Electron. Lett. 22, 1011,
1986.
[15] R. Billington, “Measurement Methods for Stimulated Raman and Brillouin
Scattering in Optical Fibers”, National Physical Laboratory Report COEM
31,1999.
[16] 張宜豐,“考慮受激拉曼散射下多模脈衝光纖雷射放大器之最大可擷取
能量的數值模擬研究”, 國立中央大學, 2014
[17] In private communication with Dr. J. Koponen from Liekki [18] R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, “Stimulated Brillouin
Scattering and Coherent Generation of Intense Hypersonic Waves”, Phys.
Rev. Lett. 12, 592, 1964.
[19] J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a
coiled multimode ?ber ampli?er,” Opt. Lett., vol. 25, pp. 442–444, 2000.
[20] Andrey Kobyakov, Michael Sauer, and Dipak Chowdhury, “Stimulated
Brillouin scattering in optical ?bers,” AOP2, 1–59, 2010
指導教授 陳仕宏(Shih-Hung Chen) 審核日期 2017-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明