博碩士論文 104222016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:35.175.191.72
姓名 鍾文梁(Wen-Liang Chung)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(The growth of multilayer graphene through chemical vapor deposition)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ Thermal stability of supersaturated carbon incorporation in silicon
★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學★ Reduction dynamics of locally oxidized graphene
★ 微小游泳粒子在固定表面的聚集現象★ Role of impurities in semiconductor: Silicon and ZnO substrate
★ Characteristic of defect generated on graphene through pulsed scanning probe lithography★ non
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 身為第一個成功被發現的二維材料,石墨烯的各項獨特性質都吸引了各領域研究者的目光,如其極高的透光度和超快的電子遷移率等。然而,因為缺乏製作穩定的大面積高品質石墨烯薄膜方法,石墨烯的應用受到了侷限。在過去將近十年的時間裡,各式各樣的石墨烯製作方法如雨後春筍般地被開發了出來。其中,化學氣相沉積法(CVD)被視為最具有研究價值的方法之一。與其他方法製作的石墨烯相比,藉由CVD所產出的石墨烯薄膜不僅連續,且可以大面積的製造,這使得CVD石墨烯的前景受到了大幅度的關注。儘管如此,CVD石墨烯仍有晶粒邊界的缺陷需要被克服。晶粒邊界不只削弱了石墨烯薄膜的強度,同時還減低了電子遷移率。因此,如何減少這些晶粒邊界、製作出大面積的單晶石墨烯已被視為提高CVD石墨烯品質的關鍵之一。
在這篇論文研究中,我們展示了利用一個爐管系統來製造公釐(mm)尺寸的石墨烯單晶成長方法。藉由探討對甲烷和氫氣的比例以及生長溫度的效應,我們找到了一個適合大面積石墨烯單晶的成長條件。此外,在這些大面積石墨烯單晶之下,我們還發現了一些低層數的小石墨烯單晶。因此,我們重新再探討了一次生長溫度的效應,發現銅的昇華對我們的系統有不容忽視的影響。這些小單晶之所以只能出現在這些大單晶底下可以被歸因於銅昇華的效應。銅的昇華會移除掉尺寸比較小的石墨烯,只有藉由大尺寸石墨烯的覆蓋,這些小石墨烯才有機會在銅昇華影響比較小的情形下獲得成長。我們希望這篇研究可以對於大尺寸的石墨烯單晶以及多層石墨烯的成長機制有所幫助。
摘要(英)
As the first identified 2-dimentional material, the unique properties of graphene, such as the ultrahigh electron mobility, had attracted lots of researchers in the related fields. However, the lack of large area and high quality graphene limited the application of graphene-based devices. In the past 10 years, a lot of graphene fabrication methods had been developed. Among these methods, CVD was seen as one of the most promising ways for graphene fabrication. CVD graphene is based on the need of large area continuous graphene films. However, the quality of CVD graphene films would be limited by the grain boundaries. The grain boundaries would reduce not only the stiffness of graphene films but also the electron mobility. Hence, how to reduce the effect of grain boundaries in CVD graphene became an important issue in related applications. The growth of graphene single crystals had been considered as a key to improve the quality of CVD graphene.
In this study, we would demonstrate the growth of millimeter sized single crystalline graphene by a furnace CVD system. By visiting the effect of hydrogen to methane ratio and the effect of growth temperature, we found a suitable growth condition for large graphene single crystals. Besides, under the mm-sized graphene single crystals, we also found the growth of smaller few-layered graphene. Hence, we revisited the effect of growth temperature and found the sublimation of copper played an important role in the system. The reason the smaller grains could only appeared under large grains could be attributed to the copper sublimation would remove the smaller grains. The coverage of the large grains could limit the copper sublimation and created an environment for the smaller grains. We hoped this study could provide some idea about the growth mechanism of large area single crystals and multilayered graphene.
關鍵字(中) ★ 石墨烯 關鍵字(英) ★ graphene
論文目次
Contents
Chapter 1 Introduction 1
Chapter 2 Backgrounds 4
2-1 Introduction to Graphene 4
2-1-1 Graphene history 4
2-1-2 Tight-binding model 6
2-2 Chemical vapor deposition of graphene 13
2-3 Other methods for graphene massive fabrications 18
2-4 Raman spectrum of graphene 23
Chapter 3 Experimental setup and method 30
3-1 Chemical vapor deposition graphene growth 30
3-2 Observation and analysis methods 32
Chapter 4 Results and discussion 38
4-1 Sample images & Raman spectrum 38
4-2 The effect of methane to hydrogen ratio 47
4-3 The effect of temperature 50
4-4 The growth of the multilayer graphene 53
Chapter 5 Conclusion 65
References 67
參考文獻

[1.] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669.
[2.] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
[3.] Khot, M. B., Gadekar, A. S., Kahanee, M. J., Potnis, V. V., Baghwan, D. B., Dhamane, S. P., & Kulkarni, A. S. (2017). Graphene-A Review. International Journal of Pharmaceutical and Phytopharmacological Research, 3(4), 343-350.
[4.] Balog, R., Jørgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., ... & Sljivancanin, Z. (2010). Bandgap opening in graphene induced by patterned hydrogen adsorption. Nature materials, 9(4), 315-319.
[5.] Zhang, Y., Tang, T. T., Girit, C., Hao, Z., Martin, M. C., Zettl, A., ... & Wang, F. (2009). Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459(7248), 820-823.
[6.] Denis, P. A., & Iribarne, F. (2013). Comparative study of defect reactivity in graphene. The Journal of Physical Chemistry C, 117(37), 19048-19055.
[7.] Vlassiouk, I., Regmi, M., Fulvio, P., Dai, S., Datskos, P., Eres, G., & Smirnov, S. (2011). Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS nano, 5(7), 6069-6076.
[8.] Zhao, Z., Chen, X., Zhang, C., Wan, W., Shan, Z., Tian, B., ... & Cai, W. (2016). An etching phenomenon exhibited by chemical vapor deposited graphene on a copper pocket. Carbon, 106, 279-283.
[9.] Wang, S., Hibino, H., Suzuki, S., & Yamamoto, H. (2016). Atmospheric pressure chemical vapor deposition growth of millimeter-scale single-crystalline graphene on the copper surface with a native oxide layer. Chemistry of Materials, 28(14), 4893-4900.
[10.] Wu, P., Zhai, X., Li, Z., & Yang, J. (2014). Bilayer graphene growth via a penetration mechanism. The Journal of Physical Chemistry C, 118(12), 6201-6206.
[11.] Ding, D., Solís-Fernández, P., Yunus, R. M., Hibino, H., & Ago, H. (2017). Behavior and role of superficial oxygen in Cu for the growth of large single-crystalline graphene. Applied Surface Science, 408, 142-149.
[12.] Da Hee Jung, C. K., Nam, J. E., Jeong, H., & Lee, J. S. (2016). Surface diffusion directed growth of anisotropic graphene domains on different copper lattices. Scientific reports, 6.
[13.] Zhao, H., Lin, Y. C., Yeh, C. H., Tian, H., Chen, Y. C., Xie, D., ... & Chiu, P. W. (2014). Growth and Raman spectra of single-crystal trilayer graphene with different stacking orientations. ACS nano, 8(10), 10766-10773.
[14.] Liu, J., Huang, Z., Lai, F., Lin, L., Xu, Y., Zuo, C., ... & Qu, Y. (2015). Controllable growth of the graphene from millimeter-sized monolayer to multilayer on Cu by chemical vapor deposition. Nanoscale research letters, 10(1), 455.
[15.] Ibrahim, A., Akhtar, S., Atieh, M., Karnik, R., & Laoui, T. (2015). Effects of annealing on copper substrate surface morphology and graphene growth by chemical vapor deposition. Carbon, 94, 369-377.
[16.] Vlassiouk, I., Smirnov, S., Regmi, M., Surwade, S. P., Srivastava, N., Feenstra, R., ... & Dai, S. (2013). Graphene nucleation density on copper: fundamental role of background pressure. The Journal of Physical Chemistry C, 117(37), 18919-18926.
[17.] Zhao, P., Cheng, Y., Zhao, D., Yin, K., Zhang, X., Song, M., ... & Xia, Y. (2016). The role of hydrogen in oxygen-assisted chemical vapor deposition growth of millimeter-sized graphene single crystals. Nanoscale, 8(14), 7646-7653.
[18.] Fei, W., Yin, J., Liu, X., & Guo, W. (2013). Dendritic graphene domains: Growth, morphology and oxidation promotion. Materials Letters, 110, 225-228.
[19.] Thangaraja, A., Shinde, S. M., Kalita, G., Papon, R., Sharma, S., Vishwakarma, R., ... & Tanemura, M. (2015). Structure dependent hydrogen induced etching features of graphene crystals. Applied Physics Letters, 106(25), 253106.
[20.] Tsai, H. C., (2017). Reduction dynamics of locally oxidized graphene. National Central University
[21.] Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature nanotechnology, 8(4), 235-246.
[22.] Malard, L. M., Pimenta, M. A. A., Dresselhaus, G., & Dresselhaus, M. S. (2009). Raman spectroscopy in graphene. Physics Reports, 473(5), 51-87.
[23.] Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K. S., & Casiraghi, C. (2012). Probing the nature of defects in graphene by Raman spectroscopy. Nano letters, 12(8), 3925-3930.
[24.] Beams, R., Cançado, L. G., & Novotny, L. (2015). Raman characterization of defects and dopants in graphene. Journal of Physics: Condensed Matter, 27(8), 083002.
[25.] Cançado, L. G., Takai, K., Enoki, T., Endo, M., Kim, Y. A., Mizusaki, H., ... & Pimenta, M. A. (2006). General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy. Applied Physics Letters, 88(16), 163106.
[26.] de la Rosa, C. J. L., Sun, J., 孙捷, Lindvall, N., Cole, M. T., Nam, Y., ... & Yurgens, A. (2013). Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu. Applied Physics Letters, 102(2), 022101.
[27.] Kim, H., Mattevi, C., Calvo, M. R., Oberg, J. C., Artiglia, L., Agnoli, S., ... & Saiz, E. (2012). Activation energy paths for graphene nucleation and growth on Cu. ACS nano, 6(4), 3614-3623.
[28.] Novoselov, K. S., Fal, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., & Kim, K. (2012). A roadmap for graphene. Nature, 490(7419), 192-200.
[29.] Loh, K. P., Bao, Q., Ang, P. K., & Yang, J. (2010). The chemistry of graphene. Journal of Materials Chemistry, 20(12), 2277-2289.
[30.] Xu, Y., Bai, H., Lu, G., Li, C., & Shi, G. (2008). Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society, 130(18), 5856-5857.
[31.] Eda, G., & Chhowalla, M. (2010). Chemically derived graphene oxide: towards large‐area thin‐film electronics and optoelectronics. Advanced materials, 22(22), 2392-2415.
[32.] Loh, K. P., Bao, Q., Eda, G., & Chhowalla, M. (2010). Graphene oxide as a chemically tunable platform for optical applications. Nature chemistry, 2(12), 1015-1024.
[33.] Ito, J., Nakamura, J., & Natori, A. (2008). Semiconducting nature of the oxygen-adsorbed graphene sheet. Journal of applied physics, 103(11), 113712.
[34.] Kim, J., Ishihara, M., Koga, Y., Tsugawa, K., Hasegawa, M., & Iijima, S. (2011). Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Applied physics letters, 98(9), 091502.
[35.] Kobayashi, T., Bando, M., Kimura, N., Shimizu, K., Kadono, K., Umezu, N., ... & Murakami, Y. (2013). Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Applied Physics Letters, 102(2), 023112.
[36.] Nie, S., Wu, W., Xing, S., Yu, Q., Bao, J., Pei, S. S., & McCarty, K. F. (2012). Growth from below: bilayer graphene on copper by chemical vapor deposition. New Journal of Physics, 14(9), 093028.
[37.] Yakobson, B. I., & Ding, F. (2011). Observational geology of graphene, at the nanoscale. Acs Nano, 5(3), 1569-1574.
[38.] Huang, P. Y., Ruiz-Vargas, C. S., van der Zande, A. M., Whitney, W. S., Levendorf, M. P., Kevek, J. W., ... & Park, J. (2011). Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 469(7330), 389-392.
[39.] Biró, L. P., & Lambin, P. (2013). Grain boundaries in graphene grown by chemical vapor deposition. New Journal of Physics, 15(3), 035024.
[40.] Zhang, X., Wang, L., Xin, J., Yakobson, B. I., & Ding, F. (2014). Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. Journal of the American Chemical Society, 136(8), 3040-3047.
[41.] Shu, H., Chen, X., & Ding, F. (2014). The edge termination controlled kinetics in graphene chemical vapor deposition growth. Chemical Science, 5(12), 4639-4645.
[42.] Dong, J., Wang, H., Peng, H., Liu, Z., Zhang, K., & Ding, F. (2017). Formation mechanism of overlapping grain boundaries in graphene chemical vapor deposition growth. Chemical Science, 8(3), 2209-2214.
[43.] Chuang, M. C., & Woon, W. Y. (2016). Nucleation and growth dynamics of graphene on oxygen exposed copper substrate. Carbon, 103, 384-390.
[44.] Norimatsu, W., & Kusunoki, M. (2014). Epitaxial graphene on SiC {0001}: advances and perspectives. Physical Chemistry Chemical Physics, 16(8), 3501-3511.
[45.] Brodie, B. C. (1859). On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 149, 249-259.
指導教授 溫偉源(Wei-Yen Woon) 審核日期 2017-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明