博碩士論文 104222023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:54.226.179.247
姓名 饒高聖(Kao-Sheng Jao)  查詢紙本館藏   畢業系所 物理學系
論文名稱 雙脈衝雷射產生錫電漿極紫外光光源之數值研究
(Numerical study of extreme ultraviolet light source from a Sn laser-produced plasma in dual-pulse scheme)
相關論文
★ 一維羅倫茲電漿粒子模擬的動力學特性★ 透過高頻電磁波加速電子來間接加速質子的數值模擬研究
★ 雷射波形對相位穩定質子加速器運作的影響★ 雷射與薄膜作用產生高能質子束之模擬與理論研究
★ 外部反射線路對於磁旋返波振盪器影響之模擬研究★ 利用強場電磁波產生高能質子束的數值模擬研究
★ 考慮受激拉曼散射下多模光纖脈衝雷射放大器之最大可擷取能量的數值模擬研究★ 空間電荷極限電流密度之理論模擬研究
★ 碰撞式粒子網格模擬法之離散粒子效應對電漿波衰減的影響★ 考慮受激非彈性散射下脈衝光纖雷射放大器之最大可擷取 能量的數值模擬研究
★ 雷射驅動電漿光譜和撞性電漿的動態行為之數值研究–應用於雷射生成錫電漿極紫外光光源★ 雷射激發錫電漿產生極紫外光之頻譜分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,極紫外光是半導體製程中非常重要的光源,其可以提升半導體光微影技術的解析度。使用雷射加熱靶材的方式產生極紫外光,會有較高的轉換效率,因此成為了熱門的研究對象。由於雷射激發靶材產生極紫外光的過程太過複雜且實驗測試的費用太高,我們使用程式模擬來了解物理特性與該使用哪些參數去提升轉換效率。基於過去的研究指出,與單一脈衝相比,使用雙脈衝雷射加熱靶材可以更有效的提升極紫外光的轉換效率。希望由本次研究可以更進一步去釐清雙脈衝雷射產生極紫外光系統中,各種雷射參數與延遲時間對轉換效率的影響。最後,在主要脈衝參數給定的情況下,我們可以由模擬給出最佳化轉換效率的預脈衝能量,再由我們計算出的通用經驗公式,決定出適合的預脈衝寬度與其對應的強度與延遲時間。
摘要(英) In recent years, extreme ultraviolet light is a very important light source in the semiconductor process, which can enhance the resolution of semiconductor light lithography technology. Research for the extreme ultraviolet light sources based on laser-produced plasma become popular, due to its high conversion efficiency. The laser-produced plasma system is too expensive to test experimental parameters, so we use numerical simulations to understand the physical properties and which parameters to use to improve conversion efficiency. Previous studies have shown that the use of dual-pulse laser system can enhance the conversion efficiency more effectively compared to the single pulse system. The influences of pre-pulse parameters, main pulse parameters and delay time on EUV conversion efficiency characteristics were discussed in the paper. Our results show that we can use the universal empirical formula to determine the optimized parameters of pre-pulse under knowing main-pulse information.
關鍵字(中) ★ 雙脈衝雷射
★ 雷射激發電漿
★ 轉換效率
★ 極紫外光
★ 錫
關鍵字(英) ★ dual-pulse laser
★ laser-produced plasma
★ conversion efficiency
★ extreme ultraviolet light
★ tin
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 V
第一章 緒論 1
第二章 理論背景 5
2.1 雷射產生電漿的過程 5
2.2電漿的動力學過程 6
2.3雷射傳遞 10
2.4雷射吸收 11
2.5 EUV產生的原子與輻射過程 12
2.6 原子譜線拓寬 15
2.7 電漿中的不透明度 17
第三章 模擬模型 19
3.1模擬流程 19
3.2流體模型 19
3.3電漿平衡模型 21
3.4離子內的電子能階分布 23
3.5輻射傳輸與定量計算極紫外光 24
3.6模擬模型之驗證 26
第四章 結果與討論 29
4.1預脈衝特徵與延遲時間對極紫外光轉換效率的影響 29
4.2主要脈衝特徵對極紫外光轉換效率的影響 32
總結:雙脈衝雷射系統中最佳化的預脈衝條件 36
第五章 總結 37
參考文獻 38
參考文獻
[1] ISO 21348 Process for Determining Solar Irradiances
[2]CHIEW-SENG KAOY,RADIATION STUDIES OF THE TIN-DOPED MICROSCOPIC DROPLET LASER PLASMA LIGHT SOURCE SPECIFIC TO EUV LITHOGRAPHY, University of Central Florida, 2006.
[3]V.Bakshi,EUV Sources for Lithography, Bellingham, Washington USA,SPIE Press, 2005.
[4]Yi-Ping Lai, “A SIMPLIFIED SPHERICAL-SYMMETRY SIMULATION MODEL FOR THE GENERATION OF 13.5-NM EXTREME ULTRAVIOLET SOURCE BY LASER-PRODUCED PLASMA”, National Taiwan University, Master Thesis, 2012.
[5] T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, et al.,”Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Applied physics letters, vol. 89, no. 15, p. 1501, 2006.
[6] A. Endo, H. Hoshino, T. Suganuma, M. Moriya, T. Ariga, Y. Ueno, M. Nakano, T. Asayama, T. Abe, H. Komori, et al., ” Laser produced euv light source development for hvm,” in Advanced Lithography, pp. 65170O-65170O, International Society for Optics and Photonics, 2007.
[7] J. White, P. Dunne, P. Hayden, F. O′Reilly, and G. O′Sullivan, “Optimizing 13.5 nm laser-produced tin plasma emission as a function of laser wavelength,” Applied physics letters, vol. 90, no. 18, 2007.
[8] D. Campos, S. Harilal, and A. Hassanein, ”Laser wavelength effects on ionic and atomic emission from tin plasmas,” Applied Physics Letters, vol. 96, no. 15, p. 151501, 2010.
[9] D. Campos, S. Harilal, and A. Hassanein, ”The effect of laser wavelength on emission and particle dynamics of Sn plasma,” Journal of Applied Physics, vol. 108, no. 11, p. 113305, 2010.
[10]Igo V.Fomenkov, David C.Brandt, Alexander N. Bykanov, Alex I. Ershov, William N.Partlo, David W. Myers, Norbert R. Bowering, Nigel R. Farrar, Georgiy O. Vaschenko, Oleh V. Khodykin, Jerzy R. Hoffman, Christopher P. Chrobak, Shailendra N. Srivastava, Daniel J. Golich, David A. Vidusek, Silvia De Dea, Richard R. Hou, “Laser-Produced Plasma Light Source for EUVL,” Proc. of SPIE Vol. 7271 727138-1, 2009.
[11]Junichi Fujimoto, Tsukasa Hori, Tatsuya Yanagida, Hakaru Mizoguchi, ”Development of Laser-Produced Tin Plasma-Based EUV Light
Source Technology for HVM EUV Lithography,” Physics Research International, Volume 2012, Article ID 249495, 11 pages.
[12] K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, et al., ”Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithographya,” Physics of Plasmas (1994-present), vol. 15, no. 5, p. 056708, 2008.
[13] T. Sizyuk and A. Hassanein, ”Enhancing extreme ultraviolet photons emission in laser produced plasmas for advanced lithography,” Physics of Plasmas (1994 present), vol. 19, no. 8, p. 083102, 2012.
[14] T. Sizyuk and A. Hassanein, ”Optimization of extreme ultraviolet photons emission and collection in mass-limited laser produced plasmas for lithography application,” Journal of Applied Physics, vol. 112, no. 3, p. 033102, 2012.
[15] J. White, Opening the Extreme Ultraviolet Lithography Source Bottleneck: Developing a 13.5-nm Laser-produced Plasma Source for the Semiconductor Industry. PhD thesis, University College Dublin, 2006.
[16]Po-Yen Lai, ” Numerical study of laser-driven plasma spectroscopy and kinetic behavior of a collisional plasma: For application of a laser-produced Sn plasma extreme ultraviolet light source,” PhD thesis, National Central University,2016.
[17] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion of Gases, Notes Added in 1951. Cambridge university press, 1952.
[18] L. Spitzer Jr and R. Hrm,”Transport phenomena in a completely ionized gas,”Physical Review, vol. 89, no. 5, p. 977, 1953.
[19] T. W. Johnston and J. M. Dawson,”Correct values for high-frequency power absorption by inverse bremsstrahlung in plasmas,”Physics of Fluids (1958-1988), vol. 16, no. 5, pp. 722722, 1973.
[20] J. Huba,”Nrl plasma formulary supported by the office of naval research,”Naval Research Laboratory, 2013.
[21] A. Einstein,”Zur quantentheorie der strahlung,”Physikalische Zeitschrift, vol. 18, pp. 121-128, 1917.
[22] R. C. Hilborn,”Einstein coefficients, cross sections, f values, dipole moments, and all that,”arXiv preprint physics/0202029, 2002
[23] M. Busquet, M. Klapisch, and A. Bar-Shalom,”Absorption and emission proles of unresolved arrays near local thermodynamic equilibrium,”Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 81, no. 1, pp. 255263, 2003.
[24] G. Wertheim, M. Butler, K. West, and D. Buchanan,”Determination of the gaussian and lorentzian content of experimental line shapes,”Review of Scientic Instruments, vol. 45, no. 11, pp. 1369-1371, 1974.
[25] A. Djaoui, ”A user guide for the laser-plasma simulation code: Med103,”1996.
[26] D. Colombant and G. Tonon,”X-ray emission in laser-produced plasmas,”Journal of Applied Physics, vol. 44, no. 8, pp. 3524-3537, 1973.
[27] R. McWhirter,”Plasma diagnostic techniques, edited by rh huddlestone and slleonard (academic, new york, 1965),”Chap, vol. 5, p. 208, 1965.
[28] G.Gupta and B.Sinha,”Parametric dependence of x-ray laser gain in laser plasmas for 3p-3s transitions in neon-like krypton ions, ”Journal of applied physics, vol. 77, no. 6, pp. 2287-2290, 1995.
[29] M. Itoh, T. Yabe, and S. Kiyokawa,”Collisional-radiative and average-ion hybrid models for atomic processes in high-z plasmas,”Physical Review A, vol. 35, no. 1, p. 233, 1987.
[30] S. Chandrasekhar, An introduction to the study of stellar structure, vol. 2. Courier Corporation, 1957.
[31] V. Sizyuk, A. Hassanein, and T. Sizyuk, ”Three-dimensional simulation of laser produced plasma for extreme ultraviolet lithography applications,” Journal of applied physics, vol. 100, no. 10, p. 103106, 2006.
[32] J. White, P. Dunne, P. Hayden, and G. OaeSullivan, ”Simplified one-dimensional calculation of 13.5 nm emission in a tin plasma including radiation transport,” Journal of Applied Physics, vol. 106, no. 11, p. 113303, 2009.
[33] J. Christiansen, D. Ashby, and K. Roberts, ”Medusa a one-dimensional laser fusion code,” Computer Physics Communications, vol. 7, no. 5, pp. 271-287, 1974.
[34] R. D. Cowan, The theory of atomic structure and spectra, vol. 3. Univ of California Press, 1981.
[35] A. Cummings, G. O′Sullivan, P. Dunne, E. Sokell, N. Murphy, and J. White, ”Conversion efficiency of a laser-produced Sn plasma at 13.5 nm, simulated with a one-dimensional hydrodynamic model and treated as a multi-component blackbody,” Journal of Physics D: Applied Physics, vol. 38, no. 4, p. 604, 2005.
[36] V. Sizyuk, A. Hassanein, V. Morozov, T. Sizyuk, et al., ”Heights integrated model as instrument for simulation of hydrodynamic, radiation transport, and heat conduction phenomena of laser-produced plasma in euv applications.,” tech. rep., Argonne National Laboratory (ANL), 2007.
[37]Christian Wagner, Noreen Harned, ”EUV lithography: Lithography gets extreme. ” Nature Photonics 4, 24 - 26 (2010)
[38] Y. Shimada, H. Nishimura, M. Nakai, K. Hashimoto, M. Yamaura, Y. Tao, K. Shigemori, T. Okuno, K. Nishihara, T. Kawamura, et al., “Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams,”Applied Physics Letters, vol. 86, no. 5, p. 051501, 2005.
[39] Katsunobu Nishihara, Atsushi Sunahara, Akira Sasaki, Masanori Nunami, Hajime Tanuma, et al., ”Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography” Phys Plasmas 15, 056708, 2008
[40] Shinsuke FUJIOKA, Hiroaki NISHIMURA, Katsunobu NISHIHARA, Noriaki MIYANAGA, Yasukazu IZAWA, Kunioki MIMA, Yoshinori SHIMADA, Atsushi SUNAHARA, “Laser Production of Extreme Ultraviolet Light Source for the Next Generation Lithography Application,” Plasma and Fusion Research, Vol. 4, p. 048, 2009.
指導教授 陳仕宏(Shih-Hung Chen) 審核日期 2017-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明