博碩士論文 104222028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.145.156.46
姓名 蔡宏傑(Hung-Chieh Tsai)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Reduction dynamics of locally oxidized graphene)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ Thermal stability of supersaturated carbon incorporation in silicon
★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學★ 微小游泳粒子在固定表面的聚集現象
★ Role of impurities in semiconductor: Silicon and ZnO substrate★ The growth of multilayer graphene through chemical vapor deposition
★ Characteristic of defect generated on graphene through pulsed scanning probe lithography★ non
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 作為第一個被成功製備出的二維材料,石墨烯的各項優異性質,從極高的表面積比到電子遷移率,吸引了廣大領域研究者們的目光。然而,缺乏能隙使得石墨烯的應用受限。近年,有許多研究致力於調控石墨烯的能隙。其中,還原的氧化石墨烯是最常見的方法之一。此方式藉由調控石墨烯的氧化與還原程度,進而調控電性。但是,常見以熱處理還原法,並無法完全移除石墨膝上的氧化官能基,使得電性難以回到原先的良好電子遷移率。這突顯了了解氧化石墨烯的還原機制之重要性。若能直接觀測到還原過程,將不只對石墨烯的應用有所幫助,也能了解在二維材料上官能基的交互作用。
在本研究中,我們展示了微米級局部氧化石墨烯的還原動態學。首先藉由以掃描探針顯影術為基底的局部陽極氧化術,在以化學氣相成積法成長出的石墨烯上,製造出微米級的局部氧化圖樣。接著以軟X光聚焦在這些氧化圖樣上,由X光所激發出的光電子提供能量,還原氧化過的石墨烯。再還原的過程中,各化學鍵的濃度由X光光電子能譜監控,藉以直接監測局部氧化石墨烯的還原動態。再還原前後,我們藉由微拉曼光譜,觀測這些局部石墨烯缺陷的結構;化學組成則以掃描式光電子顯影術與X光光電子能譜測得。最後,經由我們所觀測到,各鍵結的還原動態,我們提出一組相互耦合之微分方程作為還原機制的模型。藉由此模型,我們取得每種鍵結的組成與分解的特徵時間,與作為限制反應的階段。這些發現給了我們較為細節的還原過程之圖像。
摘要(英) With all range of striking properties from high surface-to-volume ratio to extremely high electron mobility, graphene, the truly two-dimensional (2D) material, has gathered attention of researchers in various fields. However, the lack of band gap limits applicability in graphene device. Reduction form of graphene oxide (GO) is one the most popular method to engineer band gap through introduction of sp3 bonding. The electric properties can be tuned by controlling the degree of oxidation. Nevertheless, reduction of GO done by thermal process cannot recover the excellent electronic properties of graphene due to residue of oxygen-related functional groups. Hence, understanding the mechanism of reduction of graphene oxide is necessary for both the application of graphene and interaction of functional groups on a 2D material.
In this study, we show the reduction dynamics of micron-scaled defective graphene oxide patterns done on CVD-grown graphene by scanning probe lithography (SPL), which provides localized functionalization of graphene. These patterns were subsequently reduced by the irradiation of photoelectrons induced by a focused beam of soft x-ray. By in-situ monitoring the chemical configuration of the irradiated defects during the reduction process, the evolution of each oxygen functional group is resolved by scanning photoelectron microscopy (SPEM) and x-ray photoelectron spectra (XPS). Micro-Raman spectroscopy acquired before and after the reduction process revealed the structural evolution. Moreover, the characteristic time for each functional group dissociation/ formation process involved during reduction have been identified by the proposed reaction model using a set of coupled differential equations. These finding gives the details physic picture of the reduction dynamics.
關鍵字(中) ★ 石墨烯
★ 缺陷
★ 還原動態
★ 掃描式探針顯影術
★ 拉曼光譜
★ 光電子能譜
關鍵字(英) ★ graphene
★ defect
★ reduction dynamics
★ scanning probe lithography
★ Raman spectroscopy
★ photoelectron spectroscopy
論文目次 摘要 i
Abstract ii
Contents iii
List of figures v
Chapter 1. Introduction 1
Chapter 2. Background 4
2.1. Introduction of graphene 4
2.2. Chemical Vapor Deposition of Graphene 11
2.3. Atomic force microscopy and scanning probe lithography 17
2.3.1. Principle of AFM 17
2.3.2. Operation mode of AFM 19
2.3.3. Scanning probe lithography 21
2.4. Oxidation and Reduction of graphene 24
2.4.1. Chemical oxidation of graphene 24
2.4.2. Reduction for graphene oxide 26
2.5. X-ray Photoelectron spectroscopy 27
2.6. Raman spectroscopy 31
Chapter 3. Experiment setup and method 38
3.1. Sample preparation 38
3.1.1. CVD graphene growth 38
3.1.2. Graphene transfer method 39
3.2. Scanning probe lithography 40
3.3. Micro-Raman spectroscopy 41
Chapter 4. Result and discussion 43
4.1. Initial structural property of as-grown graphene film 43
4.2. Results of SPL modification 45
4.3. Reduction of SPL pattern by soft X-ray irradiation 51
4.4. Modelling of the reduction dynamics 53
Chapter 5. Conclusion 58
Bibliography 60
參考文獻 [1] K. S.Novoselov, A. K.Geim, S.VMorozov, D.Jiang, Y.Zhang, S.VDubonos, I.VGrigorieva, andA. A.Firsov, Science (80-. ). 306, 666 (2004).
[2] R.Mas-Balleste, C.Gomez-Navarro, J.Gomez-Herrero, andF.Zamora, Nanoscale 3, 20 (2011).
[3] A. K.Geim andK. S.Novoselov, Nat Mater 6, 183 (2007).
[4] D. A. C.Brownson, D. K.Kampouris, andC. E.Banks, J. Power Sources 196, 4873 (2011).
[5] R.Balog, B.Jorgensen, L.Nilsson, M.Andersen, E.Rienks, M.Bianchi, M.Fanetti, E.Laegsgaard, A.Baraldi, S.Lizzit, Z.Sljivancanin, F.Besenbacher, B.Hammer, T. G.Pedersen, P.Hofmann, andL.Hornekaer, Nat Mater 9, 315 (2010).
[6] Y.Zhang, T. T.Tang, C.Girit, Z.Hao, M. C.Martin, A.Zettl, M. F.Crommie, Y. R.Shen, andF.Wang, Nature 459, 820 (2009).
[7] P. A.Denis andF.Iribarne, J. Phys. Chem. C 117, 19048 (2013).
[8] M.Han, B.Ozyilmaz, Y.Zhang, andP.Kim, Phys. Rev. Lett. 98, (2007).
[9] I.Jung, D. A.Dikin, R. D.Piner, andR. S.Ruoff, Nano Lett. 8, 4283 (2008).
[10] J.Zhao, S.Pei, W.Ren, L.Gao, andH.-M.Cheng, ACS Nano 4, 5245 (2010).
[11] M. J.Allen, V. C.Tung, andR. B.Kaner, Chem. Rev. 110, 132 (2009).
[12] C. O.Girit, J. C.Meyer, R.Erni, M. D.Rossell, C.Kisielowski, L.Yang, C.-H.Park, M. F.Crommie, M. L.Cohen, S. G.Louie, andA.Zettl, Science (80-. ). 323, 1705 (2009).
[13] L.Gao, G.-X.Ni, Y.Liu, B.Liu, A. H.Castro Neto, andK. P.Loh, Nature 505, 190 (2014).
[14] G.Eda andM.Chhowalla, Adv. Mater. 22, 2392 (2010).
[15] C.Gomez-Navarro, J. C.Meyer, R. S.Sundaram, A.Chuvilin, S.Kurasch, M.Burghard, K.Kern, andU.Kaiser, Nano Lett. 10, 1144 (2010).
[16] H. A.Becerril, J.Mao, Z.Liu, R. M.Stoltenberg, Z.Bao, andY.Chen, ACS Nano 2, 463 (2008).
[17] Y.Zhang, L.Zhang, andC.Zhou, Acc. Chem. Res. 46, 2329 (2013).
[18] ASM International, ASM Handbook, Volume 3, Alloy Phase Diagrams (2004).
[19] Z.-J.Wang, G.Weinberg, Q.Zhang, T.Lunkenbein, A.Klein-Hoffmann, M.Kurnatowska, M.Plodinec, Q.Li, L.Chi, R.Schloegl, andM.-G.Willinger, ACS Nano 9, 1506 (2015).
[20] W.Bao, F.Miao, Z.Chen, H.Zhang, W.Jang, C.Dames, andC. N.Lau, Nat Nano 4, 562 (2009).
[21] J. B.Nelson andD. P.Riley, Proc. Phys. Soc. 57, 477 (1945).
[22] E.Inami andY.Sugimoto, Phys. Rev. Lett. 114, 1 (2015).
[23] H.-M.Chien, M.-C.Chuang, H.-C.Tsai, H.-W.Shiu, L.-Y.Chang, C.-H.Chen, S.-W.Lee, J. D.White, andW.-Y.Woon, Carbon N. Y. 80, 318 (2014).
[24] A. A.Tseng, A.Notargiacomo, andT. P.Chen, J. Vac. Sci. & Technol. B 23, 877 (2005).
[25] M.Calleja andR.Garc??a, Appl. Phys. Lett. 76, 3427 (2000).
[26] C.Huh andS.-J.Park, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 18, 55 (2000).
[27] S.Masubuchi, M.Ono, K.Yoshida, K.Hirakawa, andT.Machida, Appl. Phys. Lett. 94, 82107 (2009).
[28] S.Stankovich, D. A.Dikin, R. D.Piner, K. A.Kohlhaas, A.Kleinhammes, Y.Jia, Y.Wu, S. T.Nguyen, andR. S.Ruoff, Carbon N. Y. 45, 1558 (2007).
[29] S.Stankovich, R. D.Piner, X.Chen, N.Wu, S. T.Nguyen, andR. S.Ruoff, J. Mater. Chem. 16, 155 (2006).
[30] J. T.Robinson, F. K.Perkins, E. S.Snow, Z.Wei, andP. E.Sheehan, Nano Lett. 8, 3137 (2008).
[31] G.Eda, G.Fanchini, andM.Chhowalla, Nat Nanotechnol 3, 270 (2008).
[32] S.Park andR. S.Ruoff, Nat Nano 4, 217 (2009).
[33] W.Gao, L. B.Alemany, L.Ci, andP. M.Ajayan, Nat Chem 1, 403 (2009).
[34] D.Yang, A.Velamakanni, G.Bozoklu, S.Park, M.Stoller, R. D.Piner, S.Stankovich, I.Jung, D. A.Field, C. A.Ventrice Jr, andR. S.Ruoff, Carbon N. Y. 47, 145 (2009).
[35] C.Gomez-Navarro, R. T.Weitz, A. M.Bittner, M.Scolari, A.Mews, M.Burghard, andK.Kern, Nano Lett. 7, 3499 (2007).
[36] A.Bagri, C.Mattevi, M.Acik, Y. J.Chabal, M.Chhowalla, andV. B.Shenoy, Nat. Chem. 2, 581 (2010).
[37] S.Pei andH.-M.Cheng, Carbon N. Y. 50, 3210 (2012).
[38] A.Felten, A.Eckmann, J.-J.Pireaux, R.Krupke, andC.Casiraghi, Nanotechnology 24, 355705 (2013).
[39] A. C.Ferrari andD. M.Basko, Nat Nano 8, 235 (2013).
[40] L. M.Malard, M. A.Pimenta, G.Dresselhaus, andM. S.Dresselhaus, Phys. Rep. 473, 51 (2009).
[41] A.Eckmann, A.Felten, A.Mishchenko, L.Britnell, R.Krupke, K. S.Novoselov, andC.Casiraghi, Nano Lett. 12, 3925 (2012).
[42] R.Beams, L. G.Cancado, andL.Novotny, J. Phys. Condens. Matter 27, 83002 (2015).
[43] L. G.Cancado, K.Takai, T.Enoki, M.Endo, Y. A.Kim, H.Mizusaki, A.Jorio, L. N.Coelho, R.Magalhaes-Paniago, andM. A.Pimenta, Appl. Phys. Lett. 88, 163106 (2006).
[44] M.-C.Chuang, H.-M.Chien, Y.-H.Chain, G.-C.Chi, S.-W.Lee, andW. Y.Woon, Carbon N. Y. 54, 336 (2013).
[45] G.Beamson andD.Briggs, High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (Wiley, 1992).

指導教授 溫偉源(Wei-Yen Woon) 審核日期 2017-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明