博碩士論文 104222029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.222.69.152
姓名 吳冠廷(Kuan-Ting Wu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 微小游泳粒子在固定表面的聚集現象
(Accumulation of microswimmers near a no-slip surface)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ Thermal stability of supersaturated carbon incorporation in silicon
★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學★ Reduction dynamics of locally oxidized graphene
★ Role of impurities in semiconductor: Silicon and ZnO substrate★ The growth of multilayer graphene through chemical vapor deposition
★ Characteristic of defect generated on graphene through pulsed scanning probe lithography★ non
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究專注於微小游泳粒子(細菌)在固定表面的聚集現象。浮游微生物在表面群聚並附著會形成生物薄膜,密切的影響著人類。常見於牙齒、杯壁和傷口等表面。且可能進一步在輸水管線內部、船殼表面造成生物淤積。雖然已經有許多清除的方法,現今的科學家投入更多的關注於微小游泳粒子與固定表面之間的交互作用,以預防生物薄膜的形成。

過去的研究發現,在低雷諾數的狀況下,會游泳的微小的細胞或細菌,如大腸桿菌、新月柄桿菌和精蟲,在黏著於表面之前都容易在固定表面附近徘徊、聚集。已經有許多的實驗證明其中有一些相同的物理機制能夠影響游泳粒子在表面附近的行為,並使其不易游離表面。其中包含微小游泳粒子與固定表面的遠場流體力學、近場流體力學和碰撞交互作用,以及粒子本身的旋轉布朗運動。希望藉由本次研究進一步了解各種交互作用所扮演的角色,以及其實質貢獻。

我們分別運用三種不同游泳模式的單鞭毛溶藻弧菌Vibrio. Alginolyticus,Pusher、Puller和bimodal,觀察細菌在表面的游泳軌跡,以及距離表面20μm以內的細菌分佈。此種細菌的游速可由溶液中的鈉離子濃度調整,利於操控細菌與表面的遠場流體力學交互作用強度。實驗結果顯示細菌在表面游泳時的傾角決定其徘徊於表面機率。而其傾角則取決於近、遠場流體力學交互作用之間的競爭或加成。最後,我們亦能了解野生細菌如何利用游泳模式的轉換在不同的環境下維持其在表面的聚集。
摘要(英) Microbial processes including biofilm formation or bio-fouling are ubiquitous and influence human extensively from daily lives to various industrial systems. For decades, researchers studied the processes and strategies of bacteria accumulation on surfaces. Considering the initial stage of biofilm formation, before the cell adhesion, swimming cells were reported swim along the surface for a long time. To describe the phenomenon, models of different perspectives of physics had been established, including far and near field hydrodynamic, steric effects and diffusion. To reach a more complete picture for the cell-surface interaction, we manipulated the swimming characteristic of single polar-flagellated bacteria, Vibrio. Alginolyticus, with mutant strains at different swimming speed. Observing the steady-state bacteria distribution within 20μm from a surface, contributions of each mechanism can be evaluated. Our results show that surface accumulation of microswimmers depends on both swimming speed and swimming characteristic. Accumulation of pusher bacteria is reduced as the speed increases. In contrast, accumulation of puller bacteria increases strongly with the speed. None of a previous model can fully explain our observations. By a closer look, the contribution of each mechanisms are assigned. Finally, we show that a microswimmer in nature can accumulate near a surface by a run and reverse swimming characteristic.
關鍵字(中) ★ 細菌
★ 表面
★ 低雷諾數
★ 自我推進粒子
★ 生物薄膜
關鍵字(英) ★ microswimmer
★ surface
★ accumulation
★ entrapment
★ low Reynolds number
★ bio-film
論文目次 Abstract v
Content vi
List of figures viii
Chapter 1 Introduction 1
Chapter 2 Backgrounds 4
2-1 Flow at low Reynolds number 5
2-1-1 General properties 5
2-1-2 Motion of solid bodies at low Reynolds number 8
2-1-3 Flow singularities 9
2-2 Microswimmers at low Reynolds number 11
2-2-1 Bacterial characteristic 11
2-2-2 Bacterial hydrodynamics 14
2-3 Accumulation of microswimmers near a no-slip surface 18
2-3-1 Far field hydrodynamic interaction 18
2-3-2 Collision and rotational Brownian motion 21
2-3-3 Near-field hydrodynamics 25
2-4 Motivations 29
Chapter 3 Experimental setup and method 30
3-1 Cells and Culture 30
3-2 Observation methods 32
Chapter 4 Results and discussion 36
4-1 Bacteria trajectories observation 36
4-2 Distribution of microswimmers near a surface 39
4-2-1 Speed- and mode-depending cell distribution 39
4-2-2 Cell distribution analysis 42
4-3 Accumulation of bimodal-swimming bacteria 47
Chapter 5 Conclusion 50
References 52

參考文獻 1. Magariyama, Y., et al., Difference in Bacterial Motion between Forward and Backward Swimming Caused by the Wall Effect. Biophysical Journal, 2005. 88(5): p. 3648-3658.
2. Lauga, E., et al., Swimming in Circles: Motion of Bacteria near Solid Boundaries. Biophysical Journal, 2006. 90(2): p. 400-412.
3. Kantsler, V., et al., Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proceedings of the National Academy of Sciences, 2013. 110(4): p. 1187-1192.
4. Vigeant, M.A.-S., et al., Reversible and Irreversible Adhesion of Motile Escherichia coli Cells Analyzed by Total Internal Reflection Aqueous Fluorescence Microscopy. Applied and Environmental Microbiology, 2002. 68(6): p. 2794-2801.
5. Berke, A.P., et al., Hydrodynamic Attraction of Swimming Microorganisms by Surfaces. Physical Review Letters, 2008. 101(3): p. 038102.
6. Li, G. and J.X. Tang, Accumulation of Microswimmers near a Surface Mediated by Collision and Rotational Brownian Motion. Physical Review Letters, 2009. 103(7): p. 078101.
7. Li, G., et al., Accumulation of swimming bacteria near a solid surface. Physical Review E, 2011. 84(4): p. 041932.
8. Molaei, M., et al., Failed Escape: Solid Surfaces Prevent Tumbling of Escherichia coli. Physical Review Letters, 2014. 113(6): p. 068103.
9. Sipos, O., et al., Hydrodynamic Trapping of Swimming Bacteria by Convex Walls. Physical Review Letters, 2015. 114(25): p. 258104.
10. Rothschild, Non-random Distribution of Bull Spermatozoa in a Drop of Sperm Suspension. Nature, 1963. 198(4886): p. 1221-1222.
11. O′Toole, G., H.B. Kaplan, and R. Kolter, Biofilm formation as microbial development. Annu Rev Microbiol, 2000. 54: p. 49-79.
12. Giacche, D., T. Ishikawa, and T. Yamaguchi, Hydrodynamic entrapment of bacteria swimming near a solid surface. Physical Review E, 2010. 82(5): p. 056309.
13. Spagnolie, S.E. and E. Lauga, Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. Journal of Fluid Mechanics, 2012. 700: p. 105-147.
14. Shum, H., E.A. Gaffney, and D.J. Smith, Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2010. 466(2118): p. 1725-1748.
15. Faber, T.E., Fluid Dynamics for Physicists.
16. Purcell, E.M., Life at Low Reynolds Number, in Physics and Our World. 2012, WORLD SCIENTIFIC. p. 47-67.
17. Hsiao, Y.-T., Sub-diffusive Dynamics in Bacterial Carpet Microfluidic Channel, in Department of physics. 2013, National central University
18. Eric, L. and R.P. Thomas, The hydrodynamics of swimming microorganisms. Reports on Progress in Physics, 2009. 72(9): p. 096601.
19. Son, K., J.S. Guasto, and R. Stocker, Bacteria can exploit a flagellar buckling instability to change direction. Nat Phys, 2013. 9(8): p. 494-498.
20. Lauga, E., Bacterial Hydrodynamics. Annual Review of Fluid Mechanics, 2016. 48(1): p. 105-130.
21. Lele, P.P., et al., The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backwards. Nat Phys, 2016. 12(2): p. 175-178.
22. Li, N., S. Kojima, and M. Homma, Sodium-driven motor of the polar flagellum in marine bacteria Vibrio. Genes Cells, 2011. 16(10): p. 985-99.
23. Turner, L., W.S. Ryu, and H.C. Berg, Real-Time Imaging of Fluorescent Flagellar Filaments. Journal of Bacteriology, 2000. 182(10): p. 2793-2801.
24. Skerker, J.M. and M.T. Laub, Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus. Nat Rev Micro, 2004. 2(4): p. 325-337.
25. Sowa, Y., et al., Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. Journal of molecular biology, 2003. 327(5): p. 1043-1051.
26. Leptos, K.C., et al., Antiphase Synchronization in a Flagellar-Dominance Mutant of Chlamydomonas. Physical Review Letters, 2013. 111(15): p. 158101.
27. Drescher, K., et al., Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering. Proceedings of the National Academy of Sciences, 2011. 108(27): p. 10940-10945.
28. Goto, T., et al., A Fluid-Dynamic Interpretation of the Asymmetric Motion of Singly Flagellated Bacteria Swimming Close to a Boundary. Biophysical Journal, 2005. 89(6): p. 3771-3779.
29. Kudo, S., et al., Asymmetric swimming pattern of Vibrio alginolyticus cells with single polar flagella. FEMS Microbiology Letters, 2005. 242(2): p. 221-225.
30. Golten, C. and W.A. Scheffers, Marine vibrios isolated from water along the dutch coast. Netherlands Journal of Sea Research, 1975. 9(3): p. 351-364.
31. Kawagishi, I., et al., The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol Microbiol, 1996. 20(4): p. 693-9.
32. Wang, J.-H., Hydrodynamic spreading of forces from bacterial carpet, in Department of physics. 2013, National Central University

指導教授 溫偉源(Wei-Yen Woon) 審核日期 2017-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明