博碩士論文 104222030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.144.251.72
姓名 程懋婷(Mao-Ting Cheng)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Foraging behavior of Caenorhabditis elegans)
相關論文
★ 多細菌鞭毛馬達的同步轉動量測★ Investigating Stators Assembly of Flagellar Motors in Escherichia Coli by PALM
★ 被動粒子在不同的流體型態★ Lab on the Agar Plates
★ Probing the Physical Environments of Bacterial Swarm Colony★ Spiral-coil Formation in Semi-flexible Self-propelled Chain System
★ Real-Time Measurement of Vibrio alginolyticus Polar Flagellar Growth★ Jamming State of Active Nematics
★ Probing Escherichia coli Energetics under Starvation by Single-Cell Measurements★ Probing Cell Wall Synthetic Dynamics by Bacterial Flagellar Motor in Escherichia coli
★ Dynamics of sodium-driven stator units in bacterial flagellar motors★ 高密度二維群游細菌系統之動力學
★ Deformation Dynamics of Active 2D Tetragonal Pseudo-Crystal★ Probing Ion-Flux of Bacterial Flagellar Motors by Correlative Microscopy
★ Aliivibrio fischeri in Motion★ 主動粒子的擴張行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文主要是探討秀麗隱桿線蟲的覓食行為和趨光性的研究。線蟲一般是生活在低溫下的土壤中,藉由吃微生物來維持生命。線蟲有1031個細胞,當中有300個是神經細胞,因為線蟲的細胞已經被定序了,在很多的研究方面來說是一個理想的樣本生物。
為了要維持生命,覓食和尋找食物對生物來說是一個很基本的能力。然而,食物不會均勻地分布在環境當中。即使線蟲有神經來辨別它們所生存的環境和簡單的神經網絡來進行決策,了解這種理想的樣本生物的覓食行為代表了簡單生物搜尋模式的縮影。實驗上,我們在空間上設計了食物的圖案,讓線蟲尋找食物。在覓食的過程中,我們記錄其運動來定義覓食的狀態,並觀察其行為上有甚麼樣的變化。我們用頭擺動的角度來定義其覓食的狀態。線蟲爬行的動作造成的較低的爬行頻率表示其移動速度。另外,還注意到線蟲的頭有探測的動作。我們將頭部的探測動作造成的較高的搜尋頻率定義為覓食狀態的重要指標。我們發現當線蟲接近食物的時候,其頭部擺動的次數增加和速度下降,表示線蟲需要更高的採樣率來修正自己的軌跡朝著食物的方向前進。我們還使用化學引誘劑和突變株來證明我們的模型。
此外,線蟲一般是生活在土讓裡面,我們認為它不具有感光的器官。有感光功能的生物都被觀察到有感光性的行為。然而,當我們照光在線蟲身上的時候,發現它有避光的現象。因此,我們分析線蟲的運動來了解其感光性的行為。
摘要(英) The aim of this thesis is to investigate the foraging and phototaxis behavior of Caenorhabditis elegans. C. elegans is a free-living nematode about 1 mm in length and lives in the soil environment at low temperature by eating microorganism to survive. C. elegans is the ideal model organism in many field of research because of their well-studied fate of its 1031 cells including ~ 300 neuron cells.
Searching for food, foraging, is the fundamental skill for living organism to survive. However, food is not homogenous distributed in the natural environments. Even C. elegans has nerves to identify their surroundings and simple neuron network for decision making, understanding the foraging behavior of this model organism C. elegans represents the epitome of a searching mode of this simple living creature. We design spatial food patterns for C. elegans to search. During the foraging process, we record images of their locomotion to define the foraging states and reveal the pattern changing of foraging behavior. We use the head angle represents the foraging states. The low creeping frequency from the crawling motion indicates the moving speed. We notice there is another head exploring motion. We defined a searching frequency from the head exploring motion as an important indicator of foraging states. We found that the numbers of head swing increase and velocity decreases when C. elegans approaching the food indicating the worm needs higher sampling rate to find the correction direction of motion toward the food. We also use chemical attractant and mutant strains to test our model.
Besides, C. elegans is regarded as having no light-sensing organism because of living in the soil environment. The phototaxis behavior is observed in living creatures having photoreceptor organism. However, we found C. elegans has negative phototaxis behavior when we illuminated the light on it. Therefore, we analyzed the locomotion of C. elegans to discover the phototaxis behavior.
關鍵字(中) ★ foraging beahvior
★ phototaxis behavior
★ C. elegans
關鍵字(英)
論文目次 Chapter 1 1
Introduction 1
1.1 Background 1
1.2 Caenorhabditis elegans 4
1.2.1 Structure 4
1.2.2 Life cycle 8
1.3 Foraging behavior 10
Chapter 2 14
Material and Method 14
2.1 Apparatus of foraging behavior experiment 14
2.2 Apparatus of phototaxis behavior experiment 15
2.2.1 Phototaxis behavior of different parts of C. elegnas’ body 15
2.2.2 Phototaxis behavior of whole body of C. elegans 16
2.3 Strains 17
2.4 Method of maintaining the C. elegans 18
2.4.1 Protocol 18
2.5 Synchronization of C. elegans 20
2.5.1 Protocol 20
2.6 Foraging behavior experiment 22
2.6.1 Protocol 22
2.7 Phototaxis behavior experiment for C. elegans’ different parts of body 23
2.7.1 Protocol 23
2.8 Phototaxis behavior experiment for C. elegans’ whole body 24
2.8.1 Protocol 24
2.9 Image process 25
2.9.1 Thinning algorithm 26
2.10 Definition of angle of head 28
2.11 Wavelet transform 29
Chapter 3 30
Result and Discussion of foraging behavior experiment 30
I-1. Real food_N2 30
3.1 Experimental aim 30
3.2 Experimental procedure 31
3.3 Measurement of the velocity and position of center of mass 31
3.4 Measurement of head position and angle of head 34
3.5 The motion of C. elegans 36
3.6 Model depiction 37
3.7 Analysis of angle of head 39
3.8 The behavior at different conditions 44
3.9 The process in real food 46
I-2. Chemical attractant_N2 49
3.10 Experimental aim 49
3.11 Measurement of ammonia acetate diffusion distance 50
3.12 Measurement of C. elegans’ velocity and position 51
3.13 Analysis of angle of head 53
3.14 The process in chemical attractant 55
II. RB1330 57
3.15 The process in real food 57
3.16 The process in chemical attractant 58
3.17 Trajectory to the food 60
3.17 Discussion 64
Chapter 4 66
Result and Discussion of phototaxis behavior experiment 66
Part I: Phototaxis behavior of different parts of C. elegans’ body 66
4.1 The light response of different parts of C. elegans 66
4.2 The response of different wavelength light 68
Part II: Phototaxis behavior of whole body of C. elegans 69
4.3 Measurement of the velocity and position of C. elegans’ center of mass 69
4.3 Discussion 71
Chapter 5 72
Conclusion 72
5.1 Foraging behavior of C. elegans 72
5.2 Phototaxis behavior of C. elegans 72
Reference 73

參考文獻 [1] S.Brenner, “The Genetics of Caenorhabdztzs elegans,” pp. 71–94, 1974.
[2] T.Kaletta andM. O.Hengartner, “Finding function in novel targets: C. elegans as a model organism.,” Nat. Rev. Drug Discov., vol. 5, no. 5, pp. 387–98, 2006.
[3] A. J.Calhoun, S. H.Chalasani, andT. O.Sharpee, “Maximally informative foraging by Caenorhabditis elegans,” Elife, vol. 3, pp. 1–13, 2014.
[4] B. B.Shtonda andL.Avery, “Dietary choice behavior in Caenorhabditis elegans.,” J. Exp. Biol., vol. 209, no. Pt 1, pp. 89–102, 2006.
[5] A.Ward, J.Liu, Z.Feng, andX. Z. S.Xu, “Light-sensitive neurons and channels mediate phototaxis in C. elegans.,” Nat. Neurosci., vol. 11, no. 8, pp. 916–22, Aug.2008.
[6] R.Mart, “Optimal search in interacting populations?: Gaussian jumps versus L ’ evy flights,” vol. 32718, pp. 1–8, 2014.
[7] M.Donaldson-matasci andA.Dornhaus, “Dance Communication Affects Consistency , but Not Breadth , of Resource Use in Pollen-Foraging Honey Bees,” vol. 9, no. 10, 2014.
[8] M.Eisenbach andM.Eisenbach, “Bacterial Chemotaxis Bacterial Chemotaxis,” no. April 2001, 2017.
[9] C. I.Bargmann, E.Hartwieg, andH. R.Horvitz, “Odorant-Selective Genes and Neurons Mediate Olfaction in C . elegans,” vol. 74, pp. 515–527, 1993.
[10] A.Gomez-marin, B. J.Duistermars, M. A.Frye, andM.Louis, “Mechanisms of odor-tracking?: multiple sensors for enhanced perception and behavior,” vol. 4, no. March, pp. 1–15, 2010.
[11] D.Kim, S.Park, L.Mahadevan, andJ. H.Shin, “The shallow turn of a worm,” no. 1, pp. 1554–1559, 2011.
[12] C.Frokjar-Jensen, M.Ailion, andS. R.Lockery, “Ammonium-acetate is sensed by gustatory and olfactory neurons in Caenorhabditis elegans,” PLoS One, vol. 3, no. 6, 2008.
[13] M.Vergassola, E.Villermaux, andB. I.Shraiman, “‘ Infotaxis ’ as a strategy for searching without gradients,” vol. 445, no. January, pp. 406–409, 2007.
[14] J. M.Gray, J. J.Hill, andC. I.Bargmann, “A circuit for navigation in Caenorhabditis elegans,” 2005.
[15] J.Kobayashi, H.Shidara, Y.Morisawa, M.Kawakami, Y.Tanahashi, K.Hotta, andK.Oka, “A method for selective ablation of neurons in C. elegans using the phototoxic fluorescent protein, KillerRed.,” Neurosci. Lett., vol. 548, pp. 261–4, Aug.2013.
[16] K. M.Huang, P.Cosman, andW. R.Schafer, “Automated detection and analysis of foraging behavior in Caenorhabditis elegans,” J Neurosci Methods, vol. 171, no. 1, pp. 153–64, Jun.2008.
[17] W.Geng, P.Cosman, S.Member, C. C.Berry, Z.Feng, andW. R.Schafer, “Automatic Tracking , Feature Extraction and Classification of C . elegans Phenotypes,” vol. 51, no. 10, pp. 1811–1820, 2004.
[18] J. S.King andR. H.Insall, “Chemotaxis?: finding the way forward with Dictyostelium,” no. September, 2009.
[19] S.Ward, “Chemotaxis by the Nematode Caenorhabditis elegans?: Identification of Attractants and Analysis of the Response by Use of Mutants Zoology?: Ward,” vol. 70, no. 3, pp. 817–821, 1973.
[20] G. J.Stephens, B.Johnson-Kerner, W.Bialek, andW. S.Ryu, “Dimensionality and dynamics in the behavior of C. elegans,” PLoS Comput. Biol., vol. 4, no. 4, p. e1000028, Apr.2008.
[21] A.Hamadeh, M. A. J.Roberts, E.August, P. E.Mcsharry, P. K.Maini, J. P.Armitage, andA.Papachristodoulou, “Feedback Control Architecture and the Bacterial Chemotaxis Network,” vol. 7, no. 5, 2011.
[22] and R. C. Y.David W. Stephens, Joel S. Brown, Foraging Behavior and Ecology. .
[23] G. J.Stephens, B.Johnson-kerner, W.Bialek, andW. S.Ryu, “From Modes to Movement in the Behavior of Caenorhabditis elegans,” vol. 5, no. 11, pp. 5–11, 2010.
[24] S.Nagy, N.Tramm, J.Sanders, S.Iwanir, I. aShirley, E.Levine, andD.Biron, “Homeostasis in C. elegans sleep is characterized by two behaviorally and genetically distinct mechanisms.,” Elife, vol. 3, pp. 1–21, Dec.2014.
[25] L. C. M.Salvador, F.Bartumeus, S. A.Levin, W. S.Ryu, andC.Valle, “Mechanistic analysis of the search behaviour of Caenorhabditis elegans,” 2014.
[26] P. A.Iglesias andP. N.Devreotes, “Navigating through models of chemotaxis,” pp. 35–40, 2008.
[27] A. J.Calhoun, A.Tong, T. O.Sharpee, S. H.Chalasani, A. J.Calhoun, A.Tong, N.Pokala, J. A. J.Fitzpatrick, andT. O.Sharpee, “Neural Mechanisms for Evaluating Environmental Variability in Caenorhabditis elegans Article Neural Mechanisms for Evaluating Environmental Variability in Caenorhabditis elegans,” Neuron, vol. 86, no. 2, pp. 428–441, 2015.
[28] M.Hendricks, “Neuroecology?: Tuning Foraging Strategies to Environmental Variability,” CURBIO, vol. 25, no. 12, pp. R498–R500, 2015.
[29] K.Milward, K.Emanuel, R.Joseph, M.DeBono, andB.Olofsson, “Neuronal and molecular substrates for optimal foraging in Caenorhabditis elegans,” 2011.
[30] M.Genetics, “PLASTICITY OF CHEMOTAXIS REVEALED BY PAIRED PRESENTATION OF A CHEMOATTRACTANT AND STARVATION IN THE NEMATODE CAENORHABDITIS ELEGANS,” vol. 1764, pp. 1757–1764, 2001.
[31] O. D.Broekmans, J. B.Rodgers, W. S.Ryu, andG. J.Stephens, “Resolving coiled shapes reveals new reorientation behaviors in C . elegans,” pp. 1–17, 2016.
[32] S.Iwanir, A. S.Brown, S.Nagy, D.Najjar, A.Kazakov, K. S.Lee, A.Zaslaver, E.Levine, andD.Biron, “Serotonin promotes exploitation in complex environments by accelerating decision-making,” Submitt. BMC Biol, pp. 1–15, 2015.
[33] H. F.Abou-Shaara, “The foraging behaviour of honey bees , Apis mellifera?: a review,” Vet. Med. (Praha)., vol. 2014, no. 1, pp. 1–10, 2014.
[34] J. T.Pierce-shimomura, T. M.Morse, andS. R.Lockery, “The Fundamental Role of Pirouettes in Caenorhabditis elegans,” vol. 19, no. 21, pp. 9557–9569, 1999.
[35] T.Gallagher, T.Bjorness, R.Greene, Y.You, andL.Avery, “The Geometry of Locomotive Behavioral States in C . elegans,” vol. 8, no. 3, 2013.
指導教授 羅健榮(Chien-Jung Lo) 審核日期 2017-3-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明