博碩士論文 104222601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.141.41.187
姓名 劉飛那(Lovina Wijayanti)  查詢紙本館藏   畢業系所 物理學系
論文名稱 以最小平方法估測質子能量
(Proton Energy Estimation by Least Square Method)
相關論文
★ 雙光子碰撞產生質子反質子對的研究★ 雙光子反應產生KsKs的研究
★ 以動力學與競爭模型模擬光刺激發光的性質★ 雙光子碰撞產生P P_bar Phi 的研究
★ 質子束在水中橫向寬度及深度劑量曲線的量測與模擬★ Recombination phenomenon study by Pad Parallel Plane Ion Chamber
★ 多重線絲漂移室之初始性能★ 分析Belle實驗中 純粹e^+ e^-→D^(*±) D^0 π^∓和e^+ e^-→D^(*+) D^(*-) π^∓過程
★ 質子治療期間伽馬射線發射的研究★ 分析Belle實驗中純粹四體生成e^+ e^-→D^(*±) D^∓ π^+ π^-及e^+ e^-→D^(*+) D^(*-) π^+ π^-
★ XY strip探測器在質子治療之應用★ 正電子發射極和瞬變伽馬的模擬 質子範圍驗證的分佈 使用PTSim進行治療
★ XY strip 探測器均勻度校準
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 質子治療是現今放射治療中最佳選擇之一,其布拉格峰特性確保不會傷害在峰後的正常或較敏感的細胞組織,所以計算劑量所用模擬計算必須力求精確。可是不同模擬(如GEANT 4, FLUKA, MCNP6)內部採用不同模型計算可能造成結果有些微差別。為此,我們在日本大阪大學RCNP(Research Center for Nuclear Physics)進行質子散射實驗以驗證不同模擬,同時此實驗也利用射程測量儀(Range Finder)測量質子散射後殘餘動能。此論文就射程測量儀設計以最小平方法(Least Square method)分別估算入射能量為160 MeV及60-78 MeV之質子能量,得能量解析度分別為~1 MeV及~0.5 MeV,證明以最小平方法估算入射質子之動能確實可行。另外,從臨床觀點而言,以質子治療眼癌需要精確而且能量在63.5 MeV左右質子束,若將此論文方法套用於商用儀器(如IBA Zebra)以估算低能量質子時,應可延伸此儀器適用範圍,滿足治療眼癌之需求。
摘要(英) Proton therapy has become one of the most promising radiation techniques for nowadays cancer treatment. A special dose characteristic of proton called as Bragg peak has contributed to spare the dose for normal tissues surrounding cancer. In order to obtain the benefit of Bragg peak, a well-known physics calculation model is needed by treatment planning system to calculate proton dose distribution before it is delivered to the patient. Monte Carlo simulation code is the most used code for the proton simulation. However, different Monte Carlo codes, such as GEANT4, FLUKA, MCNP6, give different approaches when they are used to simulate the passage of protons through the material. Therefore, a proton multiple scattering experiment at Research Center for Nuclear Physics (RCNP), Osaka University has been conducted to verify the agreement between simulation and experimental data. One of the aims in RCNP experiment was to measure the remaining proton kinetic energy by using the Range Finder. For this reason, in this simulation study, the Range Finder was used to estimate the incident proton energy by Least Square method. The Least Square method has been applied to estimate a 160 MeV and 60 – 78 MeV incident proton one-by-one. This method was found to provide ~ 1 MeV accuracy when it used to estimate a 160 MeV incident proton and ~ 0.5 MeV accuracy when it used to estimate the 60 – 78 MeV incident proton. This result shows that Least Square is an effective method for estimating incident proton energy. Furthermore, from a clinical application point of view, the Least Square method has also been applied to estimate 63 – 65 MeV monoenergetic proton planar beam source and it was found to provide ~ 0.2 MeV accuracy. This result implies that in the future, the LS method may be used to improve the proton beam energy measurement for such a low proton energy, especially to treat ocular cancer which usually needs the proton with an incident energy of 63.5 MeV.
關鍵字(中) ★ 最小平方法
★ 質子能量
★ 質子
關鍵字(英) ★ proton energy estimation
★ least square
★ proton
論文目次 ABSTRACT i
中文摘要 ii
Acknowledgements iii
Contents v
List of Figures vii
List of Tables xii
Explanation of Symbols xiii
1 Introduction 1
1.1 A Historical Background of Proton Beam Therapy 1
1.2 Current Status of Proton Beam Therapy in Taiwan 3
1.3 Multiple Scattering Experiment at RCNP 4
1.4 Objectives and Aims 7
1.5 Thesis Structure Overview 7
2 Physics Characteristic in Proton Therapy 9
2.1 Particle Species in Radiation Therapy 9
2.2 Proton Interactions with Matter 10
2.2.1 Energy Loss Rate 10
2.2.1.1 Stopping Power 11
2.2.1.2 Range and Energy Straggling 11
2.2.2 Multiple Coulomb Scattering 13
2.2.3 Nuclear Interaction 14
2.3 Proton Bragg Peak 14
2.4 Clinical Characteristic of Proton Beam 16
3 Material and Method 24
3.1 Physics Process 24
3.2 Geant4 Monte Carlo Simulation setup 25
3.3 Least Square Method 27
3.4 Research Workflow 28
4 Results and Discussion 42
4.1 Least Square Method for 160 MeV Proton 43
4.2 Proton Energy Estimation using Range Finder in the Multiple Scattering Simulation 52
5 Conclusion 59
5.1 Summary 59
5.1.1 The Study of 160 MeV Incident Proton 59
5.1.2 Study of Proton Multiple Scattering Experiment at RCNP 60
5.2 Possible Future Work 60
Bibliographies 61
Appendixes 63
A. Energy Difference 63
B. Water Phantom Geometry 67
C. Zebra-Like Geometry 70
D. Study Experience at Linkou Chang Gung Memorial Hospital / Chang Gung University 77
參考文獻

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Zschiesche, D. (2003). GEANT4 - A simulation toolkit. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8
Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K. W. (2012). Cancer and radiation therapy: current advances and future directions. Int J Med Sci, 9(3), 193–199. https://doi.org/10.7150/ijms.3635
Berger, M. J., Coursey, J. S., Zucker, M. A., & Chang, J. (1998). Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions | NIST. NIST Standard Reference Database 124. Retrieved from https://www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-helium-ions
Braga, F. V, Ribeiro, K. L., & Campos, T. P. C. (2009). Proton and Electron Deep Dose Profiles for Retinoblastoma Based on Geant 4 Code. In 2009 International Nuclear Atlantic Conference.
Cai, S. Y., Chao, T. C., Lin, M. J., Tung, C. J., & Lee, C. C. (2015). Depth Dose Characteristics of Proton Beams within Therapeutic Energy Range Using the Particle Therapy Simulation Framework (PTSim) Monte Carlo Technique. Biomed, 38, 408–413. https://doi.org/10.4103/2319-4170.167076
Carron, N. J. (2007). An Introduction to the Passage of Energetic Particles through Matter. California: Taylor & Francis Group.
Efstathiou, J. a, Gray, P. J., & Zietman, a L. (2013). Proton beam therapy and localised prostate cancer: current status and controversies. British Journal of Cancer, 108(6), 1225–30. https://doi.org/10.1038/bjc.2013.100
Knoll, G. F. (2010). Radiation Detection and Measurement (4th ed.). New York: John Wiley & Sons, Inc.
Ladra, M. M., & Yock, T. I. (2014). Proton radiotherapy for pediatric sarcoma. Cancers, 6(1), 112–127. https://doi.org/10.3390/cancers6010112
Leo, W. R. (1990). Techniques for Nuclear and Particle Physics Experiments. American Journal of Physics. https://doi.org/10.1119/1.16209
Leroy, C., & Rancoita, P.-G. (2016). Principles of Radiation Interaction in Matter and Detection (4th ed.). Singapore: World Scientific Publishing Co. Pte. Ltd.
Lewis, H. W. (1950). Multiple Scattering in an Infinite Medium. Physical Review, 78.
Lin, Y. C., Pan, C. Y., Chiang, K. J., Yuan, M. C., Chu, C. H., Tsai, Y. W., … Chen, A. E. (2017). Monte Carlo simulations for angular and spatial distributions in therapeutic-energy proton beams. Radiation Physics and Chemistry, (March), 1–8. https://doi.org/10.1016/j.radphyschem.2017.03.018
Linkou Chang Gung Memorial Hospital-Proton and Radiation Therapy Center. (2017). Retrieved April 30, 2017, from https://www1.cgmh.org.tw/intr/intr2/c33e0/english/proton-center.html#.WQXBLBOGPIU
Newhauser, W. D., & Zhang, R. (2015). The physics of proton therapy. Physics in Medicine & Biology, 60(8), R155. https://doi.org/10.1088/0031-9155/60/8/R155
Paganetti, H. (2012). Proton Therapy Physics(Series in Medical Physics and Biomedical Engineering). Health Physics. London: Taylor & Francis Group. Retrieved from http://www.lavoisier.fr/livre/notice.asp?id=RK2W6SA2XKKOWQ
Pedroni E, Scheib S, Böhringer T, Coray A, Grossmann M, L. S. (2005). Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams. Phys Med Biol.
Taylor, J. R. (1997). An Introduction to Error Analysis. California: University Science Books.
Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-tieulent, J., & Jemal, A. (2015). Global Cancer Statistics, 2012. CA: A Cancer Journal of Clinicians., 65(2), 87–108. https://doi.org/10.3322/caac.21262.
Wilson, R. R. (1946). Radiological use of fast protons. Radiology. https://doi.org/10.1148/47.5.487
Wolberg, J. (2006). Data Analysis Using the Method of Least Squares. Berlin: Springer.
指導教授 陳鎰鋒(Augustine E. Chen) 審核日期 2017-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明