博碩士論文 104222604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.226.251.22
姓名 諾嘉薩娜(Nur Khasanah)  查詢紙本館藏   畢業系所 物理學系
論文名稱 利用強短脈衝雷射與大面積懸浮式石墨烯交互作用產生質子加速
(Proton Acceleration with Intense Short Pulse Lasers Interacting with Large-Area Suspended Graphene)
相關論文
★ Nonthermal electron acceleration with 100 TW laser at National Central University★ 雷射產生電漿體中磁重聯的時間演化
★ 經由高強度雷射引發尾場所產生的非熱效 應電子加速★ 雷射電漿中無碰撞激震波的全域與局域量測
★ 激光產生的等離子體中的感應康普頓散射
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 磁重聯在宇宙中扮演著一個基本的腳色,如:磁層次風暴、極光、恆星、太陽閃焰與太陽風。實驗室天文學是一個研究太空與天文現象的完備的工具。我們利用高強度雷射照射在固態靶材上以觀測磁重聯現象。在本實驗中,我們觀測由雷射產生之磁重聯電漿在空間與時間上的演化。磁場測量在未來的實驗中是必須的。質子射線照相術是量測與成像雷射產生電漿中電場與磁場的主要診斷方法。質子束可以透過高度雷射照射薄靶才來產生。高能輻射會因為雷射驅動相對論性電子震盪與靶才物質的原子核相互作用而在寬廣的方向放出。在相對小的雷射設施,如中央大學一百兆瓦雷射,輻射防護會因為有限的空間與樓層建築強度而變成很嚴重的問題。為了要減少輻射的問題,我們必須減少游離體積中的原子數。因此我們減少靶材厚度與並選擇低原子數的材質。石墨烯是理想的選擇。因此我們發展了懸浮的石墨烯靶才來抑制輻射。大面積的懸浮式石墨烯靶受到高強度短脈衝的雷射照射。被加速的質子透過一堆變色薄膜來記錄。使用 2 奈米與 4 奈米的懸浮式石墨烯,在第五層薄膜可以觀察到訊號,其所對應的碳的能量為160 MeV。結果顯示懸掛式石墨烯靶把能量推進到足夠在未來做雷射電漿交互作用的研究。
摘要(英) Magnetic reconnection plays a fundamental role in the universe, such as magnetospheric substorms, aurorae, stellar and solar flares and their winds. Laboratory experiments can be a complemental tool to investigate space and astrophysical phenomena. We have observed the magnetic reconnection by irradiating a solid target with high-power laser beams. In these experiment, we observed the spatial and temporal plasma evolutions of magnetic reconnection in laser produced plasmas. Magnetic field measurement is needed in the future experiment. Proton radiography is a key diagnostic to measure and image the electric/magnetic field in laser produced plasmas. A thin solid target is irradiated with an intense laser pulse to produce a proton beam. High energy radiations are emitted in wide direction due to the interaction between the forced oscillating relativistic electrons by the laser electric field and the nuclei of target material. At relatively small laser facilities, such as the NCU 100 TW laser facility, the radiation protections can be a serious practical problem due to the limited space and the floor strength of the building. In order to suppress radiation, we need to reduce the number of atoms in the ionized volume. To this end, we reduce the target thickness and choose the low atomic number material. The suspended graphene is an ideal solution for this. Therefore, we have developed suspended graphene target to suppress the radiations. Large-area suspended graphene targets were exposed with intense short pulse laser. Accelerated ions were recorded with a stack of Radiochromic film (RCF). Using a 2 nm and 4 nm suspended graphene, one can see a signal in the 5th film, which corresponds to carbon energy of 160 MeV. The results of this thesis show that suspended graphene is robust enough to be used in future studies of laser plasma interaction.
關鍵字(中) ★ 磁場
★ 質子加速
★ 雷射
★ 懸浮式石墨烯
關鍵字(英) ★ Magnetic field
★ Proton acceleration
★ Laser
★ Suspended graphene
論文目次 X i
Abstract ii
Acknowledgement iii
Contents iv
List of Figures v
1 Introduction 1
1.1 Laboratory Astrophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Proton Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Suspended Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Laser-Proton Acceleration 6
2.1 High-Intensity Laser (NCU 100 TW Laser Facility) . . . . . . . . . . . . . 6
2.2 Laser Produced Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Radiation Pressure Acceleration . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Graphene 8
3.1 Graphene Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Fabrication of Large-Area Suspended Graphene . . . . . . . . . . . . . . . 9
3.3 Characterisation of Large-Area Suspended Graphene . . . . . . . . . . . . 10
3.3.1 The Scanning Electron Microscopy (SEM) . . . . . . . . . . . . . . 10
3.3.2 The Atomic Force Microscopy (AFM) . . . . . . . . . . . . . . . . . 12
3.3.3 Raman Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Experimental Setup and Diagnostic System 16
4.1 Experimental Design and Target monitor . . . . . . . . . . . . . . . . . . . 16
4.2 Suspended Graphene Holder . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Detector Holder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Results and Discussions 21
5.1 High Energy Shots on Graphene Target . . . . . . . . . . . . . . . . . . . . 21
5.2 Checking the suspended graphene by Optical Microscopy and Raman Spectroscopy
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 The e ect of pumping and opening the chamber on the breakdown of the
suspended graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Ampli ed Spontaneous Emission and Pulse Contrast . . . . . . . . . . . . 31
6 Summary 32
7 Appendix 33
7.1 RadioChromic Films as Proton Detector . . . . . . . . . . . . . . . . . . . 33
7.2 Stopping Power of Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.3 SRIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Bibliography 42
參考文獻 [1] C. Gregory, B. Loupias, J. Waugh, P. Barroso, S. Bouquet, E. Brambrink, S. Dono,
E. Falize, J. Howe, Y. Kuramitsu, R. Kodama, M. Koenig, C. Michaut, S. Myers,
W. Nazarov, M. Notley, A. Oya, S. Pikuz, M. le Gloahec, Y. Sakawa, C. Spindloe,
M. Streeter, L. Wilson, N. Woolsey, Astrophysical jet experiments, Plasma Physics
and Controlled Fusion 50. doi:10.1088/0741-3335/50/12/124039.
[2] Y. Kuramitsu, Y. Sakawa, J. N. Waugh, C. D. Gregory, T. Morita, S. Dono, H. Aoki,
H. Tanji, B. Loupias, M. Koenig, N. Woolsey, H. Takabe, Jet formation in counterstreaming
collisionless plasmas, The Astrophysical Journal Letters 707 (2) (2009)
L137.
URL http://stacks.iop.org/1538-4357/707/i=2/a=L137
[3] C. D. Gregory, B. Loupias, J. Waugh, S. Dono, S. Bouquet, E. Falize, Y. Kuramitsu,
C. Michaut, W. Nazarov, S. A. Pikuz, Y. Sakawa, N. C. Woolsey, M. Koenig, Laserdriven
plasma jets propagating in an ambient gas studied with optical and proton
diagnostics, Physics of Plasmas 17 (5) (2010) 052708. doi:10.1063/1.3431094.
[4] T. Morita, Y. Sakawa, Y. Kuramitsu, S. Dono, H. Aoki, H. Tanji, T. N. Kato, Y. T.
Li, Y. Zhang, X. Liu, J. Y. Zhong, H. Takabe, J. Zhang, Collisionless shock generation
in high-speed counterstreaming plasma
ows by a high-power laser, Physics
of Plasmas 17 (12) (2010) 122702. arXiv:http://dx.doi.org/10.1063/1.3524269,
doi:10.1063/1.3524269.
URL http://dx.doi.org/10.1063/1.3524269
[5] Y. Kuramitsu, Y. Sakawa, T. Morita, C. D. Gregory, J. N. Waugh, S. Dono, H. Aoki,
H. Tanji, M. Koenig, N. Woolsey, H. Takabe, Time evolution of collisionless shock
in counterstreaming laser-produced plasmas, Phys. Rev. Lett. 106 (2011) 175002.
doi:10.1103/PhysRevLett.106.175002.
URL https://link.aps.org/doi/10.1103/PhysRevLett.106.175002
[6] Y. Kuramitsu, Y. Sakawa, S. Dono, C. D. Gregory, S. A. Pikuz, B. Loupias,
M. Koenig, J. N. Waugh, N. Woolsey, T. Morita, T. Moritaka, T. Sano, Y. Matsumoto,
A. Mizuta, N. Ohnishi, H. Takabe, Kelvin-helmholtz turbulence associated
with collisionless shocks in laser produced plasmas, Phys. Rev. Lett. 108 (2012)
195004. doi:10.1103/PhysRevLett.108.195004.
URL https://link.aps.org/doi/10.1103/PhysRevLett.108.195004
[7] Y. Sakawa, T. Morita, Y. Kuramitsu, H. Takabe, Collisionless electrostatic
shock generation using high-energy laser systems, Advances in Physics: X
1 (3) (2016) 425{443. arXiv:http://dx.doi.org/10.1080/23746149.2016.1213660,
doi:10.1080/23746149.2016.1213660.
URL http://dx.doi.org/10.1080/23746149.2016.1213660
[8] Y. Kuramitsu, A. Mizuta, Y. Sakawa, H. Tanji, T. Ide, T. Sano, M. Koenig, A. Ravasio,
A. Pelka, H. Takabe, C. D. Gregory, N. Woolsey, T. Moritaka, S. Matsukiyo,
Y. Matsumoto, N. Ohnishi, Time evolution of kelvin-helmholtz vortices associated
with collisionless shocks in laser-produced plasmas, The Astrophysical Journal 828 (2)
(2016) 93.
URL http://stacks.iop.org/0004-637X/828/i=2/a=93
[9] Y. Kuramitsu, N. Nakanii, K. Kondo, Y. Sakawa, Y. Mori, E. Miura, K. Tsuji,
K. Kimura, S. Fukumochi, M. Kashihara, T. Tanimoto, H. Nakamura, T. Ishikura,
K. Takeda, M. Tampo, R. Kodama, Y. Kitagawa, K. Mima, K. A. Tanaka,
M. Hoshino, H. Takabe, Model experiment of cosmic ray acceleration due to an
incoherent wake eld induced by an intense laser pulse, Physics of Plasmas 18 (1)
(2011) 010701. arXiv:http://dx.doi.org/10.1063/1.3528434, doi:10.1063/1.3528434.
URL http://dx.doi.org/10.1063/1.3528434
[10] Y. Kuramitsu, N. Nakanii, K. Kondo, Y. Sakawa, Y. Mori, E. Miura, K. Tsuji,
K. Kimura, S. Fukumochi, M. Kashihara, T. Tanimoto, H. Nakamura, T. Ishikura,
K. Takeda, M. Tampo, R. Kodama, Y. Kitagawa, K. Mima, K. A. Tanaka,
M. Hoshino, H. Takabe, Experimental evidence of nonthermal acceleration of relativistic
electrons by an intensive laser pulse, Phys. Rev. E 83 (2011) 026401.
doi:10.1103/PhysRevE.83.026401.
URL https://link.aps.org/doi/10.1103/PhysRevE.83.026401
[11] Y. Kuramitsu, H.-H. Chu, L.-N. Hau, S.-H. Chen, Y.-L. Liu, C.-Y. Hsieh, Y. Sakawa,
T. Hideaki, J. Wang, Relativistic plasma astrophysics with intense lasers, High Energy
Density Physics 17 (2015) 198{202. doi:10.1016/j.hedp.2014.11.005.
[12] N. Khasanah, C. Peng, C. Chen, T. Huang, N. Bolouki, T. Moritaka, Y. Hara,
H. Shimogawara, T. Sano, Y. Sakawa, Y. Sato, K. Tomita, K. Uchino, S. Matsukiyo,
Y. Shoji, S. Tomita, S. Tomiya, R. Yamazaki, M. Koenig, Y. Kuramitsu,
Spatial and temporal plasma evolutions of magnetic reconnection
in laser produced plasmas, High Energy Density Physics 23 (2017) 15 { 19.
doi:https://doi.org/10.1016/j.hedp.2017.02.004.
URL http://www.sciencedirect.com/science/article/pii/S1574181817300095
[13] S. Naoz, R. Narayan, Generation of primordial magnetic elds on linear overdensity
scales, Phys. Rev. Lett. 111 (2013) 051303. doi:10.1103/PhysRevLett.111.051303.
URL https://link.aps.org/doi/10.1103/PhysRevLett.111.051303
[14] G. Gregori, A. Ravasio, C. Murphy, K. Schaar, A. Baird, A. Bell, A. Benuzzi-
Mounaix, R. Bingham, C. Constantin, R. Drake, M. Edwards, E. Everson, C. Gregory,
Y. Kuramitsu, W. Lau, J. Mithen, C. Niemann, H. Park, B. Remington,
B. Reville, A. Robinson, D. Ryutov, Y. Sakawa, S. Yang, N. Woolsey, M. Koenig,
F. Miniati, Generation of scaled protogalactic seed magnetic elds in laser-produced
shock waves, Nature 481 (7382) (2012) 480{483. doi:10.1038/nature10747.
[15] W. Fox, A. Bhattacharjee, K. Germaschewski, Fast magnetic reconnection
in laser-produced plasma bubbles, Phys. Rev. Lett. 106 (2011) 215003.
doi:10.1103/PhysRevLett.106.215003.
URL https://link.aps.org/doi/10.1103/PhysRevLett.106.215003
[16] P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, S. Minardi, M. S.
Wei, P. Fernandes, M. Notley, S. Bandyopadhyay, M. Sherlock, R. J. Kingham,
M. Tatarakis, Z. Najmudin, W. Rozmus, R. G. Evans, M. G. Haines, A. E. Dangor,
K. Krushelnick, Magnetic reconnection and plasma dynamics in two-beam laser-solid
interactions, Phys. Rev. Lett. 97 (2006) 255001. doi:10.1103/PhysRevLett.97.255001.
URL https://link.aps.org/doi/10.1103/PhysRevLett.97.255001
[17] N. L. Kugland, D. D. Ryutov, P.-Y. Chang, R. P. Drake, G. Fiksel, D. H. Froula,
S. H. Glenzer, G. Gregori, M. Grosskopf, M. Koenig, Y. Kuramitsu, C. Kuranz,
M. C. Levy, E. Liang, J. Meinecke, F. Miniati, T. Morita, A. Pelka, C. Plechaty,
R. Presura, A. Ravasio, B. A. Remington, B. Reville, J. S. Ross, Y. Sakawa,
A. Spitkovsky, H. Takabe, H.-S. Park, Self-organized electromagnetic eld structures
in laser-produced counter-streaming plasmas, Nature Physics 8 (2012) 809{812.
doi:10.1038/nphys2434.
[18] P. Nilson, L. Willingale, M. Kaluza, C. Kamperidis, S. Minardi, M.Wei, P. Fernandes,
M. Notley, S. Bandyopadhyay, M. Sherlock, R. Kingham, M. Tatarakis, Z. Najmudin,
W. Rozmus, R. Evans, M. Haines, A. Dangor, K. Krushelnick, Magnetic reconnection
and plasma dynamics in two-beam laser-solid interactions, Physical Review Letters
97 (25). doi:10.1103/PhysRevLett.97.255001.
[19] S. A. Gaillard, T. Kluge, K. A. Flippo, M. Bussmann, B. Gall, T. Lockard,
M. Geissel, D. T. O ermann, M. Schollmeier, Y. Sentoku, T. E. Cowan, Increased
laser-accelerated proton energies via direct laser-light-pressure acceleration
of electrons in microcone targets, Physics of Plasmas 18 (5) (2011) 056710.
arXiv:http://dx.doi.org/10.1063/1.3575624, doi:10.1063/1.3575624.
URL http://dx.doi.org/10.1063/1.3575624
[20] T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, T. Tajima, Highly ecient
relativistic-ion generation in the laser-piston regime, Phys. Rev. Lett. 92 (2004)
175003. doi:10.1103/PhysRevLett.92.175003.
URL https://link.aps.org/doi/10.1103/PhysRevLett.92.175003
[21] X. Q. Yan, C. Lin, Z. M. Sheng, Z. Y. Guo, B. C. Liu, Y. R. Lu, J. X. Fang, J. E.
Chen, Generating high-current monoenergetic proton beams by a circularlypolarized
laser pulse in the phase-stableacceleration regime, Phys. Rev. Lett. 100 (2008) 135003.
doi:10.1103/PhysRevLett.100.135003.
URL https://link.aps.org/doi/10.1103/PhysRevLett.100.135003
[22] A. Henig, S. Steinke, M. Schnurer, T. Sokollik, R. Horlein, D. Kiefer, D. Jung,
J. Schreiber, B. M. Hegelich, X. Q. Yan, J. Meyer-ter Vehn, T. Tajima, P. V.
Nickles, W. Sandner, D. Habs, Radiation-pressure acceleration of ion beams
driven by circularly polarized laser pulses, Phys. Rev. Lett. 103 (2009) 245003.
doi:10.1103/PhysRevLett.103.245003.
URL https://link.aps.org/doi/10.1103/PhysRevLett.103.245003
[23] A. Macchi, S. Veghini, T. V. Liseykina, F. Pegoraro, Radiation pressure acceleration
of ultrathin foils, New Journal of Physics 12 (4) (2010) 045013.
URL http://stacks.iop.org/1367-2630/12/i=4/a=045013
[24] S. Kar, K. F. Kakolee, B. Qiao, A. Macchi, M. Cerchez, D. Doria, M. Geissler,
P. McKenna, D. Neely, J. Osterholz, R. Prasad, K. Quinn, B. Ramakrishna, G. Sarri,
O. Willi, X. Y. Yuan, M. Zepf, M. Borghesi, Ion acceleration in multispecies targets
driven by intense laser radiation pressure, Phys. Rev. Lett. 109 (2012) 185006.
doi:10.1103/PhysRevLett.109.185006.
URL https://link.aps.org/doi/10.1103/PhysRevLett.109.185006
[25] T.-C. Liu, X. Shao, C.-S. Liu, B. Eliasson, J. Wang, S.-H. Chen, Enhancement of
proton energy by polarization switch in laser acceleration of multi-ion foils, Physics
of Plasmas 20 (10) (2013) 103112. arXiv:http://dx.doi.org/10.1063/1.4826510,
doi:10.1063/1.4826510.
URL http://dx.doi.org/10.1063/1.4826510
[26] G. M. Petrov, C. McGu ey, A. G. R. Thomas, K. Krushelnick, F. N.
Beg, Proton acceleration from high-contrast short pulse lasers interacting with
sub-micron thin foils, Journal of Applied Physics 119 (5) (2016) 053302.
arXiv:http://dx.doi.org/10.1063/1.4941318, doi:10.1063/1.4941318.
URL http://dx.doi.org/10.1063/1.4941318
[27] D. Strickland, G. Mourou, Compression of ampli ed chirped optical pulses, Optics
Communications 55 (1985) 447{449. doi:10.1016/0030-4018(85)90151-8.
[28] S. Backus, C. G. D. III, M. M. Murnane, H. C. Kapteyn, High power
ultrafast lasers, Review of Scienti c Instruments 69 (3) (1998) 1207{1223.
arXiv:http://dx.doi.org/10.1063/1.1148795, doi:10.1063/1.1148795.
URL http://dx.doi.org/10.1063/1.1148795
[29] T.-S. Hung, C.-H. Yang, J. Wang, S.-y. Chen, J.-Y. Lin, H.-h. Chu, A 110-tw
multiple-beam laser system with a 5-tw wavelength-tunable auxiliary beam for versatile
control of laser-plasma interaction, Applied Physics B 117 (4) (2014) 1189{1200.
doi:10.1007/s00340-014-5943-6.
URL http://dx.doi.org/10.1007/s00340-014-5943-6
[30] C. J. Shearer, A. D. Slattery, A. J. Stapleton, J. G. Shapter, C. T. Gibson, Accurate
thickness measurement of graphene, Nanotechnology 27 (12) (2016) 125704.
URL http://stacks.iop.org/0957-4484/27/i=12/a=125704
[31] A. K. Geim, K. S. Novoselov, The rise of graphene, Nat Mater 6 (3) (2007) 183{191.
doi:10.1038/nmat1849.
URL http://dx.doi.org/10.1038/nmat1849
[32] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung,
E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruo , Large-area synthesis of highquality
and uniform graphene lms on copper foils, Science 324 (5932) (2009)
1312{1314. arXiv:http://science.sciencemag.org/content/324/5932/1312.full.pdf,
doi:10.1126/science.1171245.
URL http://science.sciencemag.org/content/324/5932/1312
[33] X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak,
W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo,
R. S. Ruo , Graphene lms with large domain size by a two-step chemical vapor
deposition process, Nano Letters 10 (11) (2010) 4328{4334, pMID: 20957985.
arXiv:http://dx.doi.org/10.1021/nl101629g, doi:10.1021/nl101629g.
URL http://dx.doi.org/10.1021/nl101629g
[34] J. M. Wo ord, S. Nie, K. F. McCarty, N. C. Bartelt, O. D. Dubon,
Graphene islands on cu foils: The interplay between shape, orientation,
and defects, Nano Letters 10 (12) (2010) 4890{4896, pMID: 20979362.arXiv:http://dx.doi.org/10.1021/nl102788f, doi:10.1021/nl102788f.
URL http://dx.doi.org/10.1021/nl102788f
[35] M.-C. Chuang, W.-Y. Woon, Nucleation and growth dynamics of graphene
on oxygen exposed copper substrate, Carbon 103 (2016) 384 { 390.
doi:https://doi.org/10.1016/j.carbon.2016.03.049.
URL http://www.sciencedirect.com/science/article/pii/S000862231630238X
[36] Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, K. P. Loh, Electrochemical
delamination of cvd-grown graphene lm: Toward the recyclable
use of copper catalyst, ACS Nano 5 (12) (2011) 9927{9933, pMID: 22034835.
arXiv:http://dx.doi.org/10.1021/nn203700w, doi:10.1021/nn203700w.
URL http://dx.doi.org/10.1021/nn203700w
[37] L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M.
Peng, X. Bao, H.-M. Cheng, Repeated growth and bubbling transfer of graphene
with millimetre-size single-crystal grains using platinum, Nature Communications 3
(2012) 699. doi:10.1038/ncomms1702.
[38] Y.-M. Chen, S.-M. He, C.-H. Huang, C.-C. Huang, W.-P. Shih, C.-L. Chu, J. Kong,
J. Li, C.-Y. Su, Ultra-large suspended graphene as a highly elastic membrane for
capacitive pressure sensors, Nanoscale 8 (2016) 3555{3564. doi:10.1039/C5NR08668J.
URL http://dx.doi.org/10.1039/C5NR08668J
[39] G. Binnig, C. F. Quate, C. Gerber, Atomic force microscope, Phys. Rev. Lett. 56
(1986) 930{933. doi:10.1103/PhysRevLett.56.930.
URL https://link.aps.org/doi/10.1103/PhysRevLett.56.930
[40] L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus, Raman
spectroscopy in graphene, Physics Reports 473 (5) (2009) 51 { 87.
doi:http://dx.doi.org/10.1016/j.physrep.2009.02.003.
URL http://www.sciencedirect.com/science/article/pii/S0370157309000520
[41] S. G. Bochkarev, G. V. Golovin, D. S. Uryupina, S. A. Shulyapov, A. V. Andriyash,
V. Y. Bychenkov, A. B. Savel′ev, E ect of a short weak prepulse on lasertriggered
front-surface heavy-ion acceleration, Physics of Plasmas 19 (10) (2012)
103101. arXiv:http://dx.doi.org/10.1063/1.4757216, doi:10.1063/1.4757216.
URL http://dx.doi.org/10.1063/1.4757216
[42] D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig,
R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J.
Bowers, T. Tajima, J. C. Fernandez, D. Habs, B. M. Hegelich, Monoenergetic ion
beam generation by driving ion solitary waves with circularly polarized laser light,
Phys. Rev. Lett. 107 (2011) 115002. doi:10.1103/PhysRevLett.107.115002.
URL https://link.aps.org/doi/10.1103/PhysRevLett.107.115002
[43] T.-S. Hung, C.-H. Yang, J.Wang, S.-y. Chen, J.-Y. Lin, H.-h. Chu, A 110-tw multiplebeam
laser system with a 5-tw wavelength-tunable auxiliary beam for versatile control
of laser-plasma interaction, Applied Physics B 117 (4) (2014) 1189{1200.
[44] P. Antici, Laser-acceleration of high-energy short proton beams and applications,
These de Doctorat de I Ecole Polytechnique.
指導教授 藏滿康浩(Yasuhiro Kuramitsu) 審核日期 2017-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明