博碩士論文 104223004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.208.159.25
姓名 張文瑄(Wen-Hsuan Chang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以金屬氧化物ZnO及MgO修飾有序中孔洞碳材CMK-8於高效能鋰離子電池之應用
(ZnO and MgO nanoparticles confined in 3D mesoporous carbon as efficient nanocomposite anodes for lithium-ion batteries)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要是在研究中孔有序碳材CMK-8,進行金屬氧化物的複合修飾,應用在鋰離子電極當中,利用介面活性劑P123,為三嵌段共聚型的高分子,與矽源TEOS (Tetraethyl orthosilicate) 在酸性的條件下進行合成,得到其對稱性為Ia3 ̅d 構型為Cubic的矽材KIT-6,接著將KIT-6進行高溫斷燒碳化,以奈米膜鑄法得到相同對稱性的碳材CMK-8,透過SAXRD、 XRD、BET、TEM等儀器鑑定後,應證為具規則結構的中孔洞碳材,並具有高表面積。
在許多金屬氧化物當中,ZnO具有高理論電容(978 mAh/g),電化學形質活潑的特性,應用相當廣泛,而MgO雖然電性不高,卻有相當高的熱穩定性,在許多文獻當中,作為保護層應用到鋰離子電池當中,因此在本篇論文當中,將金屬氧化物ZnO及MgO含浸進入到CMK-8 當中,透過一系列儀器的鑑定可以驗證知道金屬氧化物是否成功被含浸,經由調整含浸的濃度大小,成功的合成出不同尺寸的金屬氧化物奈米粒子。將材料應用到鋰離子電池當中,在1C的循環電性當中,樣品ZnO@CMK-8-0.5的初始電容達到2214 mAh/g,而MgO@CMK-8-10wt%的初始電容也達到744 mAh/g,都遠遠大於金屬氧化物本身的理論電容。
摘要(英)
Trainsition metal oxide as anode materials in lithium ion batteries have attracted tremendous attention in the past few years because of their characterstics.ZnO is regarded as one of the most promising anode material for lithium ion batteries (LIBs), due to its high theoretical capacity (978 mAh/g), natural abundance, and low cost. Although MgO is electrochemically inactive, its adsorption capacity towards liquid electrolyte functioning as a protective coating and enhancement in ionic conductivity encourages the use of a MgO-decorated composite as an anode for LIBs.
The ZnO@CMK-8 and MgO@CMK-8 nanocomposites, composed of ultrafine ZnO and MgO nanoparticles encapsulated in three dimensional (3D) ordered mesoporous carbon CMK-8, has been successfully synthesized and served as promising anode materials in lithium-ion batteries (LIBs) with different concertration, separately. The prepared ZnO@CMK-8 and MgO@CMK-8 have been characterized by various techniques, such as XRD, nitrogen adsorption-desorption, high-resolution TEM, and SEM measurements. Our characterization results demonstrates that both ZnO and MgO nanoparticles can be incorporated into the mesopores of CMK-8 with high dispersion and small particle sizes.
As anode materials in lithium ion batteries the composites ZnO@CMK-8-0.5M displays higher initial discharge capacity(2214 mAh/g) than bulk ZnO. MgO@CMK-8-10wt% also demonstrates the better results(744 mAh/g) than rude MgO.
關鍵字(中) ★ 鋰離子電池
★ 陽極
★ 中孔有序碳材
關鍵字(英) ★ Lithium ion batteries
★ anode
★ ordered mesoporous carbon material
論文目次
中文摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 前言 - 1 -
第二章 文獻回顧 - 7 -
2-1 中孔洞有序碳材 (Mesoporous ordered carbon materials) - 7 -
2-2 陽極材料 - 18 -
2-2-1 碳材 - 18 -
2-2-2 非碳材 - 21 -
2-2-3 以金屬氧化物修飾上碳材的陽極材料 - 23 -
2-2-3-1 氧化鋅修飾碳材的陽極材料 - 25 -
2-2-3-2 氧化鎂修飾碳材的陽極材料 - 33 -
第三章 實驗方法 - 40 -
3-1 藥品 - 40 -
3-2 奈米模鑄法合成三維孔道結構 (Ia3 ̅d) 中孔洞碳材 - 42 -
3-2-1 三維立方體Ia3 ̅d中孔洞矽材模板KIT-6合成 - 42 -
3-2-2 三維立方體 Ia3 ̅d 中孔洞碳材 CMK-8合成 - 42 -
3-3 含浸法合成ZnO@CMK8陽極複合物 - 43 -
3-4 含浸法合成MgO@CMK8陽極複合物 - 44 -
3-5 材料電化學性能測試 - 44 -
3-5-1 陽極極片製作 - 44 -
3-5-2 硬幣型電池組裝 - 45 -
3-5-3 電池性能測試方法 - 46 -
3-6 實驗鑑定儀器 - 47 -
3-7 鑑定儀器之原理 - 48 -
3-7-1 同步輻射光束線 - 48 -
3-7-2 X射線粉末繞射 (Powder X-Ray Diffractometer, XRD) - 51 -
3-7-3 氮氣等溫吸脫附曲線、表面積與孔洞特性鑑定 - 52 -
3-7-4 熱重分析儀 (Thermogravimetric Analyzer, TGA)56 - 56 -
3-7-5 穿透式電子顯微鏡(Transmission Electron Microscope, TEM)57- 57 -
3-7-6 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)58 - 59 -
第四章 結果與討論 - 60 -
4-1 奈米模鑄法合成Ia3 ̅d 規則中孔洞碳材及ZnO@CMK-8陽極奈米複合物 - 60 -
4-1-1 低角度XRD結果分析 - 60 -
4-1-2 高角度XRD 結果分析 - 63 -
4-1-3 氮氣等溫吸脫附結果分析 - 66 -
4-1-4 熱重分析 - 69 -
4-1-5 SEM結果分析 - 71 -
4-1-6 TEM結果分析 - 73 -
4-1-7 XPS結果分析 - 75 -
4-1-8 循環伏安法分析 - 77 -
4-1-9 ZnO@CMK-8的電性表現 - 79 -
4-1-10 交流阻抗分析 - 84 -
4-1-11 充放電後的SEM結果分析 - 86 -
4-2 MgO@CMK8陽極奈米複合物 - 87 -
4-2-1 低角度XRD結果分析 - 87 -
4-2-2 高角度XRD結果分析 - 89 -
4-2-3 氮氣等溫吸附/脫附結果分析 - 91 -
4-2-4 熱重分析 - 93 -
4-2-5 SEM結果分析 - 95 -
4-2-6 TEM結果分析 - 97 -
4-2-7 XPS結果分析 - 99 -
4-2-8 循環伏安法分析 - 101 -
4-2-9 MgO@CMK-8電性表現 - 103 -
4-2-10 交流阻抗分析 - 107 -
4-2-11 充放電後的SEM結果分析 - 109 -
第五章 結論 - 110 -
參考文獻 - 112 -
參考文獻

1. J. M. Tarascon and M. Armand,Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414, 359-367.
2. 陳玉慧;陳奕廷,Chemistry, 2004, 62, 445.
3. B. Scrosati and J. Garche,Lithium batteries: Status, prospects and future, Journal of Power Sources, 2010, 195, 2419-2430.
4. M. M. Thackeray, C. Wolverton and E. D. Isaacs,Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries, Energy & Environmental Science, 2012, 5, 7854-7863.
5. http://batteryuniversity.com.
6. C. He, S. Wu, N. Zhao, C. Shi, E. Liu and J. Li,Carbon-Encapsulated Fe3O4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material, ACS Nano, 2013, 7, 4459-4469.
7. B. Guo, X. Wang, P. F. Fulvio, M. Chi, S. M. Mahurin, X.-G. Sun and S. Dai,Soft-Templated Mesoporous Carbon-Carbon Nanotube Composites for High Performance Lithium-ion Batteries, Advanced Materials, 2011, 23, 4661-4666.
8. J. C. Ndamanisha and L.-p. Guo,Ordered mesoporous carbon for electrochemical sensing: A review, Analytica Chimica Acta, 2012, 747, 19-28.
9. J. Lee, J. Kim and T. Hyeon,Recent Progress in the Synthesis of Porous Carbon Materials, Advanced Materials, 2006, 18, 2073-2094.
10. J. H. Knox, B. Kaur and G. R. Millward,Structure and performance of porous graphitic carbon in liquid chromatography, Journal of Chromatography A, 1986, 352, 3-25.
11. R. Ryoo, S. H. Joo and S. Jun,Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation, The Journal of Physical Chemistry B, 1999, 103, 7743-7746.
12. S. H. Joo, S. Jun and R. Ryoo,Synthesis of ordered mesoporous carbon molecular sieves CMK-1, Microporous and Mesoporous Materials, 2001, 44–45, 153-158.
13. R. Ryoo, S. H. Joo, M. Kruk and M. Jaroniec,Ordered Mesoporous Carbons, Advanced Materials, 2001, 13, 677-681.
14. S.-S. Kim and T. J. Pinnavaia,A low cost route to hexagonal mesostructured carbon molecular sieves, Chemical Communications, 2001, DOI: 10.1039/B107896H, 2418-2419.
15. F. Kleitz, S. Hei Choi and R. Ryoo,Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes, Chemical Communications, 2003, DOI: 10.1039/B306504A, 2136-2137.
16. R. Ryoo, S. H. Joo, S. Jun, T. Tsubakiyama and O. Terasaki,07-O-01 - Ordered mesoporous carbon molecular, sieves by templated synthesis: the structural varieties, Studies in Surface Science and Catalysis, 2001, 135, 150.
17. C. Liang, Z. Li and S. Dai,Mesoporous Carbon Materials: Synthesis and Modification, Angewandte Chemie International Edition, 2008, 47, 3696-3717.
18. T.-W. Kim, I.-S. Park and R. Ryoo,A Synthetic Route to Ordered Mesoporous Carbon Materials with Graphitic Pore Walls, Angewandte Chemie International Edition, 2003, 42, 4375-4379.
19. F. Zhang, Y. Meng, D. Gu, Yan, Z. Chen, B. Tu and D. Zhao,An Aqueous Cooperative Assembly Route To Synthesize Ordered Mesoporous Carbons with Controlled Structures and Morphology, Chemistry of Materials, 2006, 18, 5279-5288.
20. C. de las Casas and W. Li,A review of application of carbon nanotubes for lithium ion battery anode material, Journal of Power Sources, 2012, 208, 74-85.
21. S. Xin, Y.-G. Guo and L.-J. Wan,Nanocarbon Networks for Advanced Rechargeable Lithium Batteries, Accounts of Chemical Research, 2012, 45, 1759-1769.
22. H.-X. Zhang, C. Feng, Y.-C. Zhai, K.-L. Jiang, Q.-Q. Li and S.-S. Fan,Cross-Stacked Carbon Nanotube Sheets Uniformly Loaded with SnO2 Nanoparticles: A Novel Binder-Free and High-Capacity Anode Material for Lithium-Ion Batteries, Advanced Materials, 2009, 21, 2299-2304.
23. E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo and I. Honma,Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries, Nano Letters, 2008, 8, 2277-2282.
24. H. Zhang, H. Tao, Y. Jiang, Z. Jiao, M. Wu and B. Zhao,Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries, Journal of Power Sources, 2010, 195, 2950-2955.
25. D. Saikia, T.-H. Wang, C.-J. Chou, J. Fang, L.-D. Tsai and H.-M. Kao,A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries, RSC Advances, 2015, 5, 42922-42930.
26. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka,Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material, Science, 1997, 276, 1395-1397.
27. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon,Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 2000, 407, 496-499.
28. Y. Li, B. Tan and Y. Wu,Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability, Nano Letters, 2008, 8, 265-270.
29. G. Derrien, J. Hassoun, S. Panero and B. Scrosati,Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries, Advanced Materials, 2007, 19, 2336-2340.
30. Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li and H.-M. Cheng,Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance, ACS Nano, 2010, 4, 3187-3194.
31. Z. Bai, Y. Zhang, N. Fan, C. Guo and B. Tang,One-step synthesis of ZnO@C nanospheres and their enhanced performance for lithium-ion batteries, Materials Letters, 2014, 119, 16-19.
32. X. Shen, D. Mu, S. Chen, B. Wu and F. Wu,Enhanced Electrochemical Performance of ZnO-Loaded/Porous Carbon Composite as Anode Materials for Lithium Ion Batteries, ACS Applied Materials & Interfaces, 2013, 5, 3118-3125.
33. S. M. Abbas, S. T. Hussain, S. Ali, N. Ahmad, N. Ali and S. Abbas,Structure and electrochemical performance of ZnO/CNT composite as anode material for lithium-ion batteries, Journal of Materials Science, 2013, 48, 5429-5436.
34. C.-T. Hsieh, C.-Y. Lin, Y.-F. Chen and J.-S. Lin,Synthesis of ZnO@Graphene composites as anode materials for lithium ion batteries, Electrochimica Acta, 2013, 111, 359-365.
35. S. Shilpa, B. M. Basavaraja, S. B. Majumder and A. Sharma,Electrospun Hollow Glassy Carbon-Reduced Graphene Oxide Nanofibers with Encapsulated ZnO Nanoparticles : A Free-Standing Anode for Li-Ion Batteries, Meeting Abstracts, 2015, MA2015-02, 468.
36. K. Karthikeyan, S. Amaresh, V. Aravindan and Y. S. Lee,Microwave assisted green synthesis of MgO-carbon nanotube composites as electrode material for high power and energy density supercapacitors, Journal of Materials Chemistry A, 2013, 1, 4105-4111.
37. P. Yang and C. M. Lieber,Nanorod-Superconductor Composites: A Pathway to Materials with High Critical Current Densities, Science, 1996, 273, 1836-1840.
38. A. Bhargava, J. A. Alarco, I. D. R. Mackinnon, D. Page and A. Ilyushechkin,Synthesis and characterisation of nanoscale magnesium oxide powders and their application in thick films of Bi2Sr2CaCu2O8, Materials Letters, 1998, 34, 133-142.
39. J. T. Ouyang, C. Th, B. Caillier and J. P. Boeuf,Large gap plasma display cell with auxiliary electrodes: macro-cell experiments and two-dimensional modelling, Journal of Physics D: Applied Physics, 2003, 36, 1959.
40. R. Kakkar, P. N. Kapoor and K. J. Klabunde,Theoretical Study of the Adsorption of Formaldehyde on Magnesium Oxide Nanosurfaces:  Size Effects and the Role of Low-Coordinated and Defect Sites, The Journal of Physical Chemistry B, 2004, 108, 18140-18148.
41. S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovich, R. Jelinek and A. Gedanken,Microwave-Assisted Synthesis of Nanocrystalline MgO and Its Use as a Bacteriocide, Advanced Functional Materials, 2005, 15, 1708-1715.
42. Y. Shiratori, F. Tietz, H. P. Buchkremer and D. Stöver,YSZ–MgO composite electrolyte with adjusted thermal expansion coefficient to other SOFC components, Solid State Ionics, 2003, 164, 27-33.
43. S. Petnikota, N. K. Rotte, M. V. Reddy, V. V. S. S. Srikanth and B. V. R. Chowdari,MgO-Decorated Few-Layered Graphene as an Anode for Li-Ion Batteries, ACS Applied Materials & Interfaces, 2015, 7, 2301-2309.
44. H.-J. Kweon, S. J. Kim and D. G. Park,Modification of LixNi1−yCoyO2 by applying a surface coating of MgO, Journal of Power Sources, 2000, 88, 255-261.
45. Z. Wang, C. Wu, L. Liu, F. Wu, L. Chen and X. Huang,Electrochemical Evaluation and Structural Characterization of Commercial LiCoO2 Surfaces Modified with MgO for Lithium-Ion Batteries, Journal of The Electrochemical Society, 2002, 149, A466-A471.
46. W. Zhou, S. Upreti and M. S. Whittingham,High performance Si/MgO/graphite composite as the anode for lithium-ion batteries, Electrochemistry Communications, 2011, 13, 1102-1104.
47. N. K. Rotte, S. Yerramala, J. Boniface and V. V. S. S. Srikanth,Equilibrium and kinetics of Safranin O dye adsorption on MgO decked multi-layered graphene, Chemical Engineering Journal, 2014, 258, 412-419.
48. J. V. Stark, D. G. Park, I. Lagadic and K. J. Klabunde,Nanoscale Metal Oxide Particles/Clusters as Chemical Reagents. Unique Surface Chemistry on Magnesium Oxide As Shown by Enhanced Adsorption of Acid Gases (Sulfur Dioxide and Carbon Dioxide) and Pressure Dependence, Chemistry of Materials, 1996, 8, 1904-1912.
49. https://www.nsrrc.org.tw/.
50. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, in Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2008, DOI: 10.1002/9783527610044.hetcat0065.
51. S. Brunauer, L. S. Deming, W. E. Deming and E. Teller,On a Theory of the van der Waals Adsorption of Gases, Journal of the American Chemical Society, 1940, 62, 1723-1732.
52. 王奕凱, 邱宗明, 李秉傑合譯, 非均勻系催化原理及應用, 國立編譯館, 渤海堂文化公司, 台北, (1993).
53. E. P. Barrett, L. G. Joyner and P. P. Halenda,The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, 1951, 73, 373-380.
54. S. J.Gregg; K. S. W. Sing, “Adsorption, Surface Area and Porosity”, 2nd Ed. Academic press, New York, NY, 1982.
55. G. Ertl; H. KnÖzinger; J. Weitkamp, “Handbook of Heterogeneous Catalysis”, vol 3, VCH D-69451 Weinheim, 1997, 1058.
56. http://www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter7_report.pdf https://goo.gl/HSyFKn.
57. 羅聖全; 電子顯微鏡介紹-穿透式電子顯微鏡, 清華大學。.
58. 羅聖全; 電子顯微鏡介紹-掃描式電子顯微鏡, 清華大學。.
59. R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet and Y. Al-Douri,XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods, Ceramics International, 2013, 39, 2283-2292.
60. S. Y. Sawant and M. H. Cho,Facile and single-step route towards ZnO@C core-shell nanoparticles as an oxygen vacancy induced visible light active photocatalyst using the thermal decomposition of Zn(an)2(NO3)2, RSC Advances, 2016, 6, 70644-70652.
61. X. H. Huang, R. Q. Guo, J. B. Wu and P. Zhang,Mesoporous ZnO nanosheets for lithium ion batteries, Materials Letters, 2014, 122, 82-85.
62. C. Zhang, Z. Zhang, F. Yin, Y. Zhang, A. Mentbayeva, M.-R. Babaa, A. Molkenova and Z. Bakenov,3D Ordered Macroporous Carbon Encapsulated ZnO Nanoparticles as a High-Performance Anode for Lithium-Ion Batteries, ChemElectroChem, DOI: 10.1002/celc.201700239, n/a-n/a.
63. Y. Zou, Z. Qi, W. Jiang, J. Duan and Z. Ma,MWCNTs enhanced ZnO nanoparticles as anode for lithium ion batteries, Materials Letters, 2017, 199, 57-60.
64. G.-H. An, D.-Y. Lee and H.-J. Ahn,Tunneled Mesoporous Carbon Nanofibers with Embedded ZnO Nanoparticles for Ultrafast Lithium Storage, ACS Applied Materials & Interfaces, 2017, 9, 12478-12485.
65. Y. Zou, Z. Qi, Z. Ma, W. Jiang, R. Hu and J. Duan,MOF-derived porous ZnO/MWCNTs nanocomposite as anode materials for lithium-ion batteries, Journal of Electroanalytical Chemistry, 2017, 788, 184-191.
66. J. Duan, S. Yuan, C. Zhu, Z. Chen, G. Zhang, H. Duan, L. Li and Z. Zhu,One-step synthesis of ZnO/N-doped carbon/Cu composites for high-performance lithium ion batteries anodes, Synthetic Metals, 2017, 226, 39-45.
67. L. Huang, X. Wang, F. Yin, C. Zhang, J. Gao, J. Liu, G. Zhou, Y. Zhang and Z. Bakenov,Three-dimensional carbon cloth-supported ZnO nanorod arrays as a binder-free anode for lithium-ion batteries, Journal of Nanoparticle Research, 2017, 19, 42.
68. Y. Fu, B. Zhong, Y. Chen, Y. Song, R. Zhou, Y. Song and S. Chen,Porous ZnO@C core–shell nanocomposites as high performance electrode materials for rechargeable lithium-ion batteries, Journal of Porous Materials, 2017, 24, 613-620.
69. Y. Zhang, Y. Wei, H. Li, Y. Zhao, F. Yin and X. Wang,Simple fabrication of free-standing ZnO/graphene/carbon nanotube composite anode for lithium-ion batteries, Materials Letters, 2016, 184, 235-238.
70. S. Gao, R. Fan, B. Li, L. Qiang and Y. Yang,Porous carbon-coated ZnO nanoparticles derived from low carbon content formic acid-based Zn(II) metal-organic frameworks towards long cycle lithium-ion anode material, Electrochimica Acta, 2016, 215, 171-178.
71. E. Quartarone, V. Dall′Asta, A. Resmini, C. Tealdi, I. G. Tredici, U. A. Tamburini and P. Mustarelli,Graphite-coated ZnO nanosheets as high-capacity, highly stable, and binder-free anodes for lithium-ion batteries, Journal of Power Sources, 2016, 320, 314-321.
72. H. Li, Y. Wei, Y. Zhang, C. Zhang, G. Wang, Y. Zhao, F. Yin and Z. Bakenov,In situ sol-gel synthesis of ultrafine ZnO nanocrystals anchored on graphene as anode material for lithium-ion batteries, Ceramics International, 2016, 42, 12371-12377.
73. R. Chakravarti, A. Mano, H. Iwai, S. S. Aldeyab, R. P. Kumar, M. L. Kantam and A. Vinu,Functionalization of Mesoporous Carbon with Superbasic MgO Nanoparticles for the Efficient Synthesis of Sulfinamides, Chemistry – A European Journal, 2011, 17, 6673-6682.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2017-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明