博碩士論文 104223016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.236.16.13
姓名 劉毓琪(Yu-Chi Liu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 應用於染料敏化太陽能電池之釕金屬錯合物合成與其性質探討
相關論文
★ 含3,4-乙烯二氧噻吩輔助配位基之鋨、釕金屬錯合物合成與其在染料敏化太陽能電池的應用★ 含共軛配位基之釕錯合物合成與其在染料敏化太陽能電池的應用
★ 新型三吡啶釕錯合物光敏化染料的合成與性質探討★ 釕錯合物敏化太陽能電池元件優化與光伏特性探討
★ 有機共吸附染料的合成與性質探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要針對染料敏化太陽能電池(Dye-sensitized solar cells (DSCs))設計合成出兩個新型釕金屬錯合物染料(代號CYC-37與CYC-39),兩者的設計概念源自於Black dye (N749),我們在其三吡啶(Terpyridine)固著配位基減少一個羧酸,並藉由四號位延伸配位基之共軛長度以拓展染料的吸光波長範圍和提高吸收係數,同時,兩染料共軛雜環(Conjugated heterocycle)末端均接上正己基以期能提高染料分子吸附之穩定性。在共軛雜環的選擇上,CYC-37是使用有推電子能力的3,4-乙烯二氧噻吩(3,4-ethylene-dioxythiophene (EDOT))單元,而CYC-39則史無前例地引入具拉電子效應的噻唑(Thiazole),以詳細探討比較推拉電子效應對於染料分子性質與其敏化之電池元件的影響;在DMF溶劑下,CYC-37與CYC-39的最大吸收波長分別為615 nm與616 nm,相較於Black dye不僅紅移了10 nm以上,兩新穎染料的整體吸光強度亦高於Black dye,此外,CYC-39搭配碘電解液的電池元件初步測試效能可達9.0% (優於Black dye元件(8.8%)),此結果顯示由三吡啶固著配位基四號位連接具拉電子效果之共軛雜環,確實有機會提高釕金屬錯合物敏化太陽能電池的光電轉換效率。
摘要(英) In this research, we designed and synthesized two new ruthenium complexes, coded CYC-37 and CYC-39, respectively for the application in dye-sensitized solar cells (DSCs). The concept of molecular engineering is originated from the Black dye (N749). We replaced one carboxyl group at the fourth position of terpyridine ligand with a conjugated moiety to expand the light absorption range and to enhance the molar absorption coefficient. A hexyl substituent was attached at the terminal of the anchoring ligands to improve adsorption stability of dye molecules. With the attempts to investigate the electron donating and withdrawing effects on the properties of dye molecules and the device performance, the conjugated heterocycle used in CYC-37 and CYC-39 is 3,4-ethylene-dioxythiophene (EDOT) and thiazole, respectively. The maximum absorption wavelength (λmax) of CYC-37 and CYC-39 in DMF is 615 nm and 616 nm, respectively. Compared to the Black dye, CYC-37 and CYC-39 both show superior light harvesting capability. The preliminary test shows that the device sensitized with CYC-39 in conjunction with an iodide-based electrolyte has the good efficiency of 9.0%, which surpasses that of Black dye (8.8%) measured under the same conditions. These results exhibit that the terpyridine ligand bearing unprecedentedly the electron withdrawing heterocycle, thiazole, at the fourth binding position is promising to boost the power conversion efficiency of ruthenium complex sensitized solar cells.
關鍵字(中) ★ 染料敏化太陽能電池
★ 釕金屬錯合物
★ 固著配位基
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1-1前言 1
1-2太陽光譜與太陽能電池的光伏參數 1
1-3太陽能電池的發展歷史簡介 4
1-4染料敏化太陽能電池的工作原理 6
1-5染料分子設計相關文獻探討 9
1-5-1釕金屬錯合物之結構設計 10
1-5-2含噻唑單元之染料 27
1-6研究動機 36
第二章 實驗部分 39
2-1實驗藥品 39
2-2中間產物之結構與簡稱 41
2-3合成流程及實驗步驟 45
2-3-1在四號位置帶有溴的三牙酯基之合成 45
2-3-2 Ligand-37-ester的合成 50
2-3-3 Ligand-39-ester的合成 53
2-3-4釕金屬錯合物CYC-37的合成 57
2-3-5釕金屬錯合物CYC-39的合成 59
2-4儀器分析與樣品製備 61
2-5 元件組裝與光電轉換效率量測 71
2-5-1 DSCs元件組裝流程 71
2-5-2 光電轉換效率量測系統 72
第三章 結果與討論 74
3-1 合成反應之探討 74
3-1-1三吡啶配位基合成 74
3-1-2釕金屬錯合物合成遭遇之問題與解決方法 76
3-2 結構鑑定與光物理性質探討 82
3-2-1 染料官能基鑑定 82
3-2-2 釕金屬錯合物光物理性質探討 83
3-3 釕金屬錯合物電化學性質與前置軌域位能計算 86
3-4 CYC-37、CYC-39及Black dye敏化電池元件性能探討 90
第四章 結論 95
參考文獻 96
附錄 101
參考文獻 參考文獻
[1] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, "Dye-sensitized solar cells." Chem. Rev. 2010, 110, 6595-6663.
[2] http://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra.
[3]http://www.laserfocusworld.com/articles/2009/05/photovoltaics-measuring-the-sun.html.
[4] E. Becquerel, "Memoire sur les effets électriques produits sous l’influence des rayons solaires." C. R. Acad. Sci. 1839, 9, 561-567.
[5] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan and G. Luo, "Electrolytes in dye-sensitized solar cells." Chem. Rev. 2015, 115, 2136-2173.
[6] https://sites.google.com/site/ensatptd/tai-yang-guang-dian-fa-dian.
[7] a) M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger and A. W. Y. Ho-Baillie, "Solar cell efficiency tables (version 51)." Prog. Photovolt. Res. Appl. 2018, 26, 3-12; b) https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
[8] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, "Dye-sensitized zinc oxide: aqueous electrolyte: platinum photocell." Nature 1976, 261, 402-403.
[9] B. Regan and M. Grätzel, "A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films." Nature 1991, 353, 737-740.
[10] S. Yun, P. D. Lund and A. Hinsch, "Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells." Energy Environ. Sci. 2015, 8, 3495-3514.
[11] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, S. M. Zakeeruddin, J. H. Tsai, C. Grätzel, C. G. Wu and M. Grätzel, "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells." ACS Nano 2009, 3, 3103-3109.
[12] S. Mathew, A. Yella, P. Gao, R. H. Baker, B. F. Curchod, N. A. Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers." Nat. Chem. 2014, 6, 242-247.
[13] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes." Chem. Commun. 2015, 51, 15894-15897.
[14] M. K. Nazeeruddin, I. R. A. Kay, R. H. Baker, P. L. E. Mueller, N. Vlachopoulos and M. Grätzel, "Conversion of light to electricity by cis-X2bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes." J. Am. Chem. Soc. 1993, 115, 6382-6390.
[15] a) M. K. Nazeeruddin, R. H. Baker, P. Liska, and M. Grätzel, "Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 Solar Cell." J. Phys. Chem. B 2003, 107, 8981-8987; b) M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers." J. Am. Chem. Soc. 2005, 127, 16835-16847.
[16] M. K. Nazeeruddin, T. R. P. Pechy, S. M. Zakeeruddin, R. H. Baker, P. Comte, L. C. P. Liska, E. Costa, V. Shklover, G. B. D. L. Spiccia, C. A. Bignozzi and M. Grätzel, "Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells." J. Am. Chem. Soc. 2001, 123, 1613-1624.
[17] a) C. C. Chou, K. L. Wu, Y. Chi, W. P. Hu, S. J. Yu, G. H. Lee, C. L. Lin and P. T. Chou, "Ruthenium (II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells." Angew. Chem. Int. Ed. 2011, 50, 2054-2058; b) C. W. Hsu, S. T. Ho, K. L. Wu, Y. Chi, S. H. Liu, and P. T. Chou, "Ru (Ⅱ) sensitizers with a tridentate heterocyclic cyclometalate for dye-sensitized solar cells." Energy. Environ. Sci. 2012, 5, 7549-7554.
[18] S. H. Yang, K. L. Wu, Y. Chi, Y. M. Cheng and P. T. Chou, "Tris (thiocyanate) ruthenium (II) sensitizers with functionalized dicarboxyterpyridine for dye-sensitized solar cells." Angew. Chem. Int. Ed. 2011, 50, 8270-8274;
[19] H. W. Lin, Y.-S. Wang, Z. Y. Huang, Y. M. Lin, C. W. Chen, S. H. Yang, K. L. Wu, Y. Chi, S. H. Liu and P. T. Chou, "Origins of device performance in dicarboxyterpyridine Ru (II) dye-sensitized solar cells." Phys. Chem. Chem. Phys. 2012, 14, 14190-1495.
[20] M. Kimura, J. Masuo, Y. Tohata, K. Obuchi, N. Masaki, T. N. Murakami, N. Koumura, K. Hara, A. Fukui, R. Yamanaka and S. Mori, "Improvement of TiO2/dye/electrolyte interface conditions by positional change of alkyl chains in modified panchromatic Ru complex dyes." Chem. Eur. J. 2013, 19, 1028-1034.
[21] L. Han, A. Islam, H. Chen, C. Malapaka, B. Chiranjeevi, S. Zhang, X. Yang and M. Yanagida, "High-efficiency dye-sensitized solar cell with a novel co-adsorbent." Energy. Environ. Sci. 2012, 5, 6057-6060.
[22] Y. Numata, S. P. Singh, A. Islam, M. Iwamura, A. Imai, K. Nozaki and L. Han, "Enhanced light-harvesting capability of a panchromatic Ru (II) sensitizer based on π-extended terpyridine with a 4-methylstyryl group for dye-sensitized solar cells." Adv. Funct. Mater. 2013, 23, 1817-1823.
[23] H. Ozawa, T. Kuroda, S. Harada and H. Arakawa, "Efficient ruthenium sensitizer with a terpyridine ligand having a hexylthiophene unit for dye-sensitized solar cells: Effects of the substituent position on the solar cell performance." Eur. J. Inorg. Chem. 2014, 2014, 4734-4739.
[24] H. Ozawa, K. Fukushima, A. Urayama and H. Arakawa, "Efficient ruthenium sensitizer with an extended pi-conjugated terpyridine ligand for dye-sensitized solar cells." Inorg. Chem. 2015, 54, 8887-8889.
[25] H. Ozawa, Y. Tawaraya and H. Arakawa, "Effects of the alkyl chain length of imidazoliumiodide in the electrolyte solution on the performance of black-dye-based dye-sensitized solar cells." Electrochim. Acta. 2015, 151, 447-452.
[26] H. Ozawa, T. Sugiura, T. Kuroda, K. Nozawa and H. Arakawa, "Highly efficient dye-sensitized solar cells based on a ruthenium sensitizer bearing a hexylthiophene modified terpyridine ligand." J. Mater. Chem. A 2016, 4, 1762-1770.
[27] F. Sauvage, J. D. Decoppet, M. Zhang, S. M. Zakeeruddin, P. Comte, M. Nazeeruddin, P. Wang and M. Grätzel, "Effect of sensitizer adsorption temperature on the performance of dye-sensitized solar cells." J. Am. Chem. Soc. 2011, 133, 9304-9310.
[28] A. Colombo, C. Dragonetti, A. Valore, C. Coluccini, N. Manfredi and A. Abbotto, "Thiocyanate-free ruthenium (II) 2,2’-bipyridyl complexes for dye-sensitized solar cells." Polyhedron 2014, 82, 50-56.
[29] C. H. Siu, C. L. Ho, J. He, T. Chen, X. Cui, J. Zhao and W. Y. Wong, "Thiocyanate-free ruthenium (II) cyclometalated complexes containing uncommon thiazole and benzothiazole chromophores for dye-sensitized solar cells." J. Organomet. Chem. 2013, 748, 75-83.
[30] H. N. T. P. Gao, M. Grätzel and M. K. Nazeeruddin, "Fine-tuning the electronic structure of organic dyes for dye-sensitized solar cells." Org. Lett. 2012, 14, 4330-4333.
[31] T. Li, J. Gao, Y. Cui, C. Zhong, Q. Ye and L. Han, "Novel D-π-A carbazole sensitizers with 4-phenyl-2-(thiophen-2-yl) thiazole as π-bridge for dye-sensitized solar cells." J Photochem. Photobiol. A Chem. 2015, 303-304, 91-98.
[32] R. P. Tejada, L. Pellejà, E. Palomares, S. Franco, J. Orduna, J. Garín and R. Andreu, "Novel 4 H -pyranylidene organic dyes for dye-sensitized solar cells: Effect of different heteroaromatic rings on the photovoltaic properties." Org. Electron. 2014, 15, 3237-3250.
[33] C. H. Chen, Y. C. Hsu, H. H. Chou, K. R. Thomas, J. T. Lin and C. P. Hsu, "Dipolar compounds containing fluorene and a heteroaromatic ring as the conjugating bridge for high-performance dye-sensitized solar cells." Chem. Eur. J. 2010, 16, 3184-3193.
[34] a) A. Bedi, S. P. Senanayak, K. S. Narayan and S. S. Zade, "Synthesis and characterization of copolymers based on cyclopenta[c]thiophene and bithiazole and their transistor properties." J. Polym. Sci. A Polym. Chem. 2013, 51, 4481-4488; b) B. Fu, C. Y. Wang, B. D. Rose, Y. Jiang, M. Chang, P. H. Chu Z. Yuan, C. Fuentes-Hernandez, B. Kippelen, J. L. Brédas, D. M. Collard and E. Reichmanis, "Molecular engineering of nonhalogenated solution-processable bithiazole-based electron-transport polymeric semiconductors." Chem. Mater. 2015, 27, 2928-2937.
[35] H. Usta, W. C. Sheets, M. Denti, G. Generali, R. Capelli, S. Lu, X. Yu, M. Muccini and A. Facchetti, "Perfluoroalkyl-functionalized thiazole–thiophene oligomers as N-channel semiconductors in organic field-effect and light-emitting transistors." Chem. Mater. 2014, 26, 6542-6556.
[36] Z. Xiao, J. Subbiah, K. Sun, S. Ji, D. J. Jones, A. B. Holmes and W. W. H. Wong, "Thiazolyl substituted benzodithiophene copolymers: synthesis, properties and photovoltaic applications." J. Mater. Chem. C 2014, 2, 1306-1313.
[37] R. S. Kumar, H. Jeong, J. Jeong, R. K. Chitumalla, M. J. Ko, K. S. Kumar, J. Jang and Y. A. Son, "Synthesis of porphyrin sensitizers with a thiazole group as an efficient π-spacer: potential application in dye-sensitized solar cells." RSC Adv. 2016, 6, 41294-41303.
[38] M. Larhed, C. Moberg and A. Halleberg, "Microwave-accelerated homogeneous catalysis in organic chemistry." Acc. Chem. Res. 2002, 35, 717-727.
[39] a) B. L. Hayes, "Recent Advances in Microwave Assisted Synthesis." Aldricchim. Aceta. 2004, 17, 65-76; b) "."; c) "CEM聚焦微波化學反應系統—中/英文操作及維護手冊."
[40] a) D. A. Skoog, F. J. Holler and S. R. Crouch. Principles of Instrumental Analysis, 6th ed. Brooks/Cole, Cengage Learning, 2007; b) D. L. Pavia, G. M. Lampman, G. S. Kriz and J. R. Vyvyan, Introduction to Spectroscopy, 5th ed. Brooks/Cole, Cengage Learning, 2015.
[41] W. H. Brown and T. Poon, Introduction to Organic Chemistry, 2th ed. Saunders College Publishing, 2000.
[42] " http://140.136.176.3/joom/data/menu/files/exp/CV."
[43] G. T. Morgan and F. H. Burstall, "Dehydrogenation of pyridine by anhydrous ferric chloride." J. Am. Chem. Soc. 1932, 20-30.
[44] D. Saccone, C. Magistris, N. Barbero, P. Quagliotto, C. Barolo and G. Viscardi, "Terpyridine and quaterpyridine complexes as sensitizers for photovoltaic applications." Materials 2016, 9, 137-174.
[45] F. Kröhnke, "The specific synthesis of pyridines and oligopyridines." Synthesis 1976, 1, 1-24.
[46] V. P. Mehta and E. V. V. Eycken, "Microwave-assisted C-C bond forming cross-coupling reactions: an overview." Chem. Rev. 2011, 40, 4925-4936.
[47] S. K. Mehta, S. Kumar, S. Chaudhary and K. K. Bhasin, "Nucleation and growth of surfactant-passivated CdS and HgS nanoparticles: Time-dependent absorption and luminescence profiles." Nanoscale 2010, 2, 145-152.
[48] R. Katoh, M. Kasuya, S. Kodate, A. Furube, N. Fuke and N. Koide, "Effects of 4-tert-butylpyridine and Li ions on photoinduced electron injection efficiency in black-dye-sensitized nanocrystalline TiO2 films." J. Phys. Chem. C. 2009, 113, 20738-20744.
[49] K. Haraa, T. Nishikawab, M. Kurashigea, H. Kawauchic, T. Kashimac, K. Sayamaa,
K. Aikab and H. Arakawa "Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO2 solar cell based on a Ru (II) terpyridyl complex photosensitizer." Sol. Energy Mater. Sol. Cells 2005, 85, 21-30.
[50] Y. Shiac, Y. Wang, M. Zhang and X. Dong, "Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium." Phys. Chem. Chem. Phys. 2011, 13, 14590-14597.
[51] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, "Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1):  the case of solar cells using the I-/I3- redox couple." J. Phys. Chem. B. 2005, 109, 3480–3487.
[52] C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Dai, "Photoelectrochemical effects of guanidinium thiocyanate on dye-sensitized solar cell performance and stability." J. Phys. Chem. C. 2009, 113, 21779–21783.
指導教授 陳家原(Chia-Yuan Chen) 審核日期 2018-1-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明