博碩士論文 104223019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.145.154.150
姓名 官易慧(Yi-Hui Guan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以固相萃取法結合衍生化利用MALDI-TOF MS 檢測環境水樣中之微囊藻毒素
(non)
相關論文
★ 以質譜技術探討非共價鍵結蛋白質聚合物之結構★ 以液相層析質譜儀檢測水樣與生物檢體中 全氟界面活性劑之濃度
★ 利用液相層析串聯質譜技術檢測水環境中藥物殘留物之方法開發與應用★ 直鏈式烷基苯基二甲基銨鹽類陽離子型界面活性劑在水環境中微量檢測方法的研究
★ 芳香族磺酸鹽類有機污染物在水環境中的分析與研究★ 以固相萃取及氣相層析質譜儀對水環境中壬基苯酚類 持久性有機污染物之分析與研究
★ 以固相萃取法及氣相層析質譜儀對水環境中動情激素類有機污染物之分析與研究★ 利用熱裂解直接高溫衍生化法快速分析直鏈式烷基三甲基銨鹽之方法建立與探討
★ 利用感應偶合電漿質譜儀檢測半導體製程用化學品中微量金屬不純物之分析研究★ 應用毛細管電泳間接偵測方法分離四級銨鹽界面活性劑
★ 利用毛細管電泳結合線上濃縮方法分離奈磺酸鹽之機制探討★ 快速分析水環境中醫療藥品殘留物之研究與探討
★ 以毛細管電泳法與電灑游離質譜法探討內包錯合物之研究★ 以氣相及液相層析質譜儀分析具荷爾蒙效應物質之方法開發
★ 以離子配對高效液相層析儀檢測螢光增白劑在不同基質中之研究★ 以氣相層析質譜儀檢測具荷爾蒙效應添加劑之方法開發與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 因水中植物、藻類過度繁殖所引起的優養化不僅會造成水質惡化及惡臭,大量繁殖的藻類甚至會產生毒素。其中最常被發現的有毒汙染物之一為微囊藻毒素 (Microcystin),其對於肝臟和神經系統具有毒性,也會促進腫瘤生長,在多種異構體中Microcystin-LR (MC-LR) 最普遍且毒性最強。除了暴露於環境水體中之隱憂,人類也可能透過食物鏈而接觸到微囊藻毒素,故有必要開發一套快速方法檢測水環境中Microcystin濃度。
本研究使用固相萃取法 (Solid phase extraction,SPE) 結合硫醇官能基衍生化並利用MALDI-TOF MS檢測環境水樣中之微囊藻毒素:MC-LR與MC-YR。最佳化實驗步驟為50 mL 水樣使用Supelclean ENVI-18之固相吸附材料,以流速1 mL/min、5 mL 10%甲醇水溶液清洗及5 mL甲醇沖提,沖提液經吹氮濃縮並回溶後取出10 μL,並添加1 μL β-mercaptoethanol (BME) 衍生化試劑及40 μL Na2CO3緩衝溶液,於室溫下反應1 hr,並以50 μL 80%乙腈水溶液 (含0.1% TFA) 萃取出待測物。
本實驗MC-LR及MC-YR線性範圍為0.5-10 μg/L,決定係數分別為0.9939及0.9876,定量極限 (LOQ) 皆為0.3 μg/L,精密度 (precision) 以相對標準差 (RSD) 表示,皆小於9%,準確度 (accuracy) 以回收率表示,在93至116%間,顯示此方法穩定且具有良好的再現性。然在目前所收集的環境水樣檢測中,兩種微囊藻毒素待測物的含量皆低於本方法偵測極限。
摘要(英) Overbreeding of aquatic plants and algae not only causes deterioration of water quality, but some species of algae also produce toxins, one of the most commonly found being microcystin. Microcystin is toxic to the liver and nervous system, and also promotes tumor growth, with microcystin-LR (MC-LR) being the most prevalent and most toxic out of all the isoforms possible. In addition to the hidden dangers of exposure to environmental microcystin in water, humans may also come into contact with microcystin through our foods, as the toxin accumulates via the food chain.
In this study, a solid phase extraction (SPE) method coupled with thiol derivation and matrix-assisted laser desorption/ ionization time of flight mass spectrometry (MALDI-TOF MS) was developed, and was able to successfully detect microcystins in water. The best experimental conditions included water sample at a flow rate of 1 mL / min, washing with 10% methanol (in water), and elution with 5 mL methanol for SPE (Supelclean ENVI-18). The eluent was dried under nitrogen and reconstituted with β-mercaptoethanol to derivatize the analyte.
In this study, the linear ranges of MC-LR and MC-YR were 0.5-10 μg/L, with coefficients of determination (r2) of 0.9939 and 0.9876, respectively. Limit of detection (LOD) was 0.2 μg/L. The method had good accuracy (recovery 93-116%) and precision (RSD < 9%). The concentrations of microcystin-LR and microcystin-YR in water samples were lower than the limits of detection.
關鍵字(中) ★ 微囊藻毒素
★ 固相萃取法
★ 硫醇衍生化
★ 基質輔助雷射脫附游離法
關鍵字(英)
論文目次 摘要 i
Abstract iii
謝誌 v
目錄 vii
圖目錄 xi
表目錄 xiii
第一章 前言 1
1-1 研究起源 1
1-2 研究目標 3
第二章 文獻回顧 5
2-1 微囊藻毒簡介 5
2-1-1 優養化 5
2-1-2 微囊藻毒素結構與性質 6
2-1-3 毒性研究 11
2-1-4 環境流布 14
2-1-5 相關規範 16
2-1-6 相關檢測文獻 17
2-2 基質輔助雷射脫附游離 23
2-2-1 發展歷史 23
2-2-2 結構與原理 25
2-2-3 游離機制 26
2-2-4 MALDI的特點 28
2-2-5 樣品配置 29
2-2-6 基質的特性 30
2-3 固相萃取法 35
2-3-1 優點 36
2-3-2 步驟及選用 37
2-4 衍生化 39
第三章 實驗步驟與樣品分析 41
3-1 實驗藥品與設備 41
3-1-1 實驗藥品 41
3-1-2 儀器設備 43
3-2 實驗步驟 44
3-2-1 標準品配置 44
3-2-2 基質輔助雷射脫附游離質譜 45
3-2-3 固相萃取步驟 46
3-2-4 衍生化步驟 47
3-3 樣品採集 48
第四章 結果與討論 49
4-1 基質輔助雷射脫附游離法 49
4-1-1 待測物標準品分析 49
4-1-2 檢量線及偵測極限 51
4-2 樣品製備方式探討 52
4-2-1 基質選擇 52
4-2-2 樣品盤選擇 54
4-2-3 點盤方式 55
4-2-4 待測物與基質之體積比例 56
4-3 固相萃取法最佳化條件探討 57
4-3-1 流速選擇 57
4-3-2 沖提溶劑之選擇 58
4-3-3清洗溶劑比例之選擇 60
4-3-4 沖提溶劑體積之選擇 61
4-4衍生化條件探討 62
4-4-1沖提溶劑比例選擇 62
4-5 Mandel test & Lack of fit 63
4-5-1 Mandel’s fitting test 63
4-5-2 Lack-of-fit 64
4-6 真實樣品檢測 65
4-6-1 環境水樣檢測結果 65
4-6-2 方法確效 75
4-6-3 檢測結果比較 76
第五章 結論 79
第六章 參考文獻 81
附錄 91
參考文獻  王培任,微囊藻毒Microcystin-LR 抑制斑馬魚胚發育之研究,台灣大學漁業科學研究所碩士論文,2005。
 王红兵,朱惠剛,我國若干湖泊中藍藻毒素的遺傳毒性研究,中國公共衛生學報,1995,14,339-341。
 台灣質譜學會,質譜分析技術原理與應用,2015。
 林財富、曾怡禎,飲用水水源及水質中產毒藻種及藻類毒素之研究,行政院環保署,2007。
 劉文毅,舒為群,微囊藻毒素人體生物標誌物研究進展,中華預防醫學雜誌,2013,47,1。
 Aguete, EC; Gago-Martínez, A; Leão, JM; Rodríguez-Vázquez, JA; Menàrd, C; Lawrence, JF. HPLC and HPCE analysis of microcystins RR, LR and YR present in cyanobacteria and water by using immunoaffinity extraction. Talanta 2003, 59(4), 697-705.
 Amé, MV; Galanti, LN; Menone, ML; Gerpe, MS; Moreno, VJ; Wunderlin, DA, Microcystin–LR, –RR, –YR and –LA in water samples and fishes from a shallow lake in Argentina. Harmful Algae 2010, 9, 66-73.
 Azevedo, SM; Carmichael,WW; Jochimsen, EM; Rinehart, KL; Lau, S; Shaw, GR; Eaglesham, GK. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 2002, 181-182,441-446.
 Babica, P.; Kohoutek, J.; Bláha, L.; Adamovský, O.; Maršálek, B. Evaluation of extraction approaches linked to ELISA and HPLC for analyses of Microcystin-LR, -RR and -YR in freshwater sediments with different organic material contents. Analytical and Bioanalytical Chemistry 2006, 385, 1545-1551.
 Beltrán, E; Ibáñez, M; Sancho, JV; Hernández, F. Determination of six microcystins and nodularin in surface and drinking waters by on-line solid phase extraction-ultra high pressure liquid chromatography tandem mass spectrometry, Journal of Chromatography A 2012, 1266, 61-68.
 Bouaïcha, N.; Maatouk, I.; Plessis, M.; Périn, F. Genotoxic potential of Microcystin-LR And Nodularinin vitro in primary cultured rat hepatocytes andin vivo in rat liver. Environmental Toxicology 2005, 20, 341-347.
 Butler, N.; Carlisle, J.C.; Linville, R.; Washburn, B. Microcystins: A brief overview of their toxicity and effects, with special reference to fish, wildlife, and livestock. Office of Environmental Health Hazard Assessment 2009.
 Cameán, A.; Moreno, I.; Ruiz, M.; Picó, Y. Determination of Microcystins in natural blooms and cyanobacterial strain cultures by matrix solid-phase dispersion and liquid chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry 2004, 380, 537-544.
 Chen, J.; Xie, P.; Li, L.; Xu, J. First Identification of the hepatotoxic mMicrocystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicological Sciences 2009, 108, 81-89.
 Chen, L.; Chen, J.; Zhang, X.; Xie, P. A review of reproductive toxicity of Microcystins. Journal of Hazardous Materials 2016, 301, 381-399.
 Chen, W.; Li, L.; Gan, N.; Song, L. Optimization of an effective extraction procedure for the analysis of Microcystins in soils and lake sediments. Environmental Pollution 2006, 143, 241-246.
 Ferranti, P.; Fabbrocino, S.; Nasi, A.; Caira, S.; Bruno, M.; Serpe, L.; Gallo, P. Liquid chromatography coupled to quadruple time-of-flight tandem mass spectrometry for Microcystin analysis in freshwaters: method performances and characterisation of a novel variant of Microcystin-RR. Rapid Communications in Mass Spectrometry 2009, 23, 1328-1336.
 Hitzfeld, B.; Hoger, S.; Dietrich, D. Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environmental Health Perspectives 2000, 108, 113-122
 Howard, K.; Boyer, G. Quantitative analysis of cyanobacterial toxins by matrix-assisted laser desorption ionization mass spectrometry. Analytical Chemistry 2007, 79, 5980-5986.
 Hung, K.C.; Ding, H.; Guo, B. Use of poly(tetrafluoroethylene)s as a sample support for the MALDI-TOF analysis of DNA and proteins. Analytical Chemistry 1999, 71, 518-521.
 Kaloudis, T.; Zervou, S.K.; Tsimeli, K.; Triantis, T.M.; Fotiou, T.; Hiskia, A. Determination of microcystins and nodularin (cyanobacterial toxins) in water by LC-MS/MS. Monitoring of Lake Marathonas, a water reservoir of Athens, Greece. Journal of Hazardous Materials 2013, 263, 1, 105-115.
 Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry 1988, 60, 2299-2301.
 Kiviranta, J.; Abdel-Hameed, A. Toxicity of the bluegGreen alga oscillatoria agardhii to the mosquito Aedes aegypti and the shrimp Artemia salina. World Journal of Microbiology & Biotechnology 1994, 10, 517-520.
 Kohoutek, J.; Adamovský, O.; Oravec, M.; Šimek, Z.; Palíková, M.; Kopp, R.; Bláha, L. LC-MS analyses of microcystins in fish tissues overestimate toxin levels—critical comparison with LC-MS/MS. Analytical and Bioanalytical Chemistry 2010, 398, 1231-1237.
 Kwok-Wai Man, B.; Hon-Wah Lam, M.; Lam, P.; Wu, R.; Shaw, G. Cloud-Point extraction and preconcentration of cyanobacterial toxins (Microcystins) from natural waters using a cationic surfactant. Environmental Science & Technology 2002, 36, 3985-3990.
 Lee, T. H.; Chen, Y. M.; Chou, H. N. Toxicity assay of cyanobacterial strains using Artemia salina in comparison with the mouse assay. Acta Zoologica Taiwanica 1999, 10, 1-9.
 Li, Q.; Lian, L.; Wang, X.; Wang, R.; Tian, Y.; Guo, X.; Lou, D. Analysis of microcystins using high-performance liquid chromatography and magnetic solid-phase extraction with silica-coated magnetite with cetylpyridinium chloride. Journal of Separation Science 2017, 40, 1644-1650.
 Li, W.; Duan, J.; Niu, C.; Qiang, N.; Mulcahy, D. Determination of Microcystin-LR in drinking water using UPLC tandem mass spectrometry-matrix effects and measurement. Journal of Chromatographic Science 2011, 49, 665-670.
 Liu, H.; Lu, X.; Deng, C.; Yan, X. Highly Sensitive MC-LR detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with magnetic mesoporous silica for fast extraction. Rapid Communications in Mass Spectrometry 2013, 27, 2515-2518.
 Liu, Y. Treatment of the cyanotoxins cylindrospermopsin, Microcystin-LR, and anatoxin-a by activated carbon in drinking water. University of Waterloo, Master of Applied Science in Civil Engineering (Water), 2017.
 Magalhães, VF.; Soares, RM.; Azevedo, SM. Microcystin contamination in fish from the Jacarepaguá Lagoon (Rio de Janeiro, Brazil): ecological implication and human health risk. Toxicon 2001, 39, 1077-1085.
 McLellan, N.; Manderville, R. Toxic Mechanisms Of Microcystins In Mammals. Toxicology Research 2017, 6, 391-405.
 Metcalf, J.; Morrison, L.; Krienitz, L.; Ballot, A.; Krause, E.; Kotut, K.; Pütz, S.; Wiegand, C.; Pflugmacher, S.; Codd, G. Analysis of the cyanotoxins anatoxin-a and microcystins in lesser flamingo feathers. Toxicological & Environmental Chemistry 2006, 88, 159-167.
 Metcalf, J.; Richer, R.; Cox, P.; Codd, G. Cyanotoxins In desert environments may present a risk to human health. Science of The Total Environment 2012, 421-422, 118-123.
 Miles, C.; Sandvik, M.; Nonga, H.; Rundberget, T.; Wilkins, A.; Rise, F.; Ballot, A. Thiol derivatization for LC-MS identification of Microcystins in complex matrices. Environmental Science & Technology 2012, 46, 8937-8944.
 Milutinovic, A.; Sedmak, B.; Horvat-Znidarsic, I.; SUPUT, D.; Renal injuries induced by chronic intoxication with microcystins. Cellular & Molecular Biology Letters 2002, 7, 139-141.
 Palagama, D.; West III, R.; Isailovic, D. Improved solid-phase extraction protocol and sensitive quantification of six microcystins in water using an HPLC-orbitrap mass spectrometry system. Analytical Methods 2017, 9, 2021-2030.
 Pekar, H; Westerberg, E; Bruno, O; Lääne, A; Persson, KM; Sundström, LF; Thim, AM. Fast, rugged and sensitive ultra high pressure liquid chromatography tandem mass spectrometry method for analysis of cyanotoxins in raw water and drinking water--First findings of anatoxins, cylindrospermopsins and microcystin variants in Swedish source waters and infiltration ponds. Journal of Chromatogr A 2016, 1429, 265-276.
 Pouria, S.; de Andrade, A.; Barbosa, J.; Cavalcanti, R.; Barreto, V.; Ward, C.; Preiser, W.; Poon, G.; Neild, G.; Codd, G. Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. The Lancet 1998, 352, 21-26.
 Qian, Z.; Li, Z.; Ma, J.; Gong, T.; Xian, Q. Analysis of trace microcystins in vegetables using matrix solid-phase dispersion followed by high performance liquid chromatography triple-quadrupole mass spectrometry detection. Talanta 2017, 173, 101-106.
 Roegner, A.; Schirmer, M.; Puschner, B.; Brena, B.; Gonzalez-Sapienza, G. Rapid quantitative analysis of microcystins in raw surface waters with MALDI MS utilizing easily synthesized internal standards. Toxicon 2014, 78, 94-102.
 Rohrlack, T.; Dittmann, E.; Henning, M.; Borner, T.; Kohl, J. Role of microcystins in poisoning and food ingestion inhibition of daphnia galeata caused by the cyanobacterium microcystis aeruginosa. Applied and Environmental Microbiology 1999, 65, 737-739.
 Schriemer, D.; Li, L. Detection of high molecular weight narrow polydisperse polymers up to 1.5 million daltons by MALDI mass spectrometry. Analytical Chemistry 1996, 68, 2721-2725.
 Shen, P. Effects of cyanobacteria bloom extract on some parameters of immune function in mice. Toxicology Letters 2003, 143, 27-36.
 Smith, J.; Boyer, G. Standardization of microcystin extraction from fish tissues: a novel internal standard as a surrogate for polar and non-polar variants. Toxicon 2009, 53, 238-245.
 Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry, Rapid Communications in Mass Spectrometry 1988, Vol.2, 151-153.
 Trinchet, I.; Djediat, C.; Huet, H.; Dao, S.; Edery, M. Pathological modifications following sub-chronic exposure of medaka fish (Oryzias Latipes) to Microcystin-LR. Reproductive Toxicology 2011, 32, 329-340.
 Wickstrom, M.; Haschek, W.; Henningsen, G.; Miller, L.; Wyman, J.; Beasley, V. Sequential ultrastructural and biochemical changes induced by Microcystin-LR in isolated perfused rat livers. Natural Toxins 1996, 4, 195-205.
 Yu, H.; Clark, K.; Anderson, J. Rapid and sensitive analysis of Microcystins using ionic liquid-based in situ dispersive liquid–liquid microextraction. Journal of Chromatography A 2015, 1406, 10-18.
 Zagajewski, P.; Gołdyn1, R; Fabiś, M. Water blooms and their toxicity in public swimming areas of lakes in the Poznań district. Oceanological and Hydrobiological Studies 2007, 36, 1, 181-187.
 Zervou, S.; Christophoridis, C.; Kaloudis, T.; Triantis, T.; Hiskia, A. New SPE-LC-MS/MS method for simultaneous determination of multi-class cyanobacterial and algal toxins. Journal of Hazardous Materials 2017, 323, 56-66.
 Zurawell, R.; Chen, H.; Burke, J.; Prepas, E. Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health, Part B 2005, 8, 1-37.
指導教授 丁望賢 審核日期 2018-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明