博碩士論文 104223023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:54.237.249.90
姓名 李牧心(Mu-Hsin, Lee)  查詢紙本館藏   畢業系所 化學學系
論文名稱 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 以金屬氧化物ZnO及MgO修飾有序中孔洞碳材CMK-8於高效能鋰離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要分為兩大部分,在第一部分研究中,超小奈米鈷金屬還原在特殊三維孔道中孔洞材料KIT-6之中(命名為Co@KIT-6),利用添加雙還原劑使金屬還原速率上升和KIT-6表面原有的羥基,使離子鈷金屬能快速平均披覆在KIT-6孔洞之中原位還原形成超小奈米金屬鈷。由於KIT-6高比表面積880m2g-1和孔洞體積0.9cm3g-1,使用KIT-6載體可以提高奈米鈷金屬分散率和附載率而提升催化活性。此外具有5nm的內部孔徑的KIT-6可以限制奈米鈷金屬成長範圍避免聚集。因為奈米鈷金屬在三維結構中受到調節,所以它可避免快速失活並且促進催化活性以達到高再利用時間。用於氨硼烷水解的Co @ KIT-6的轉換頻率和活化能(Ea)幾乎達到20 mol H2 /mol Co/min和26kJ mol-1。在這項研究中,Co @ KIT-6展示了用於從氨硼烷產生氫的高前景催化劑。
在第二部分研究中,透過浸泡法,超小奈米銅粒子可被固定附載在梭酸官能化及具擴孔的二氧化矽SBA-16籠型中孔洞中(命名為Cu@LP-S16C-x)。奈米銅粒子大小範圍為2至7奈米,在適當的鹼性條件下(pH 9.0)籠型中孔洞表面上的羧酸官能團會去質子化形成有利的靜電相互作用,吸引銅離子前驅物有效摻入。籠型中孔洞和表面官能基團的組合限制並固定奈米銅粒子和調整它們的粒子大小的雙重有益特徵。奈米銅粒子還原在LP-S16C-x材料中對4-硝基苯酚(4-nitrophenol)還原催化有極佳的結果,作為還原4-硝基苯酚的催化劑,Cu(x)@LP-S16C-x表現出非常高的催化活性,活性參數為1296.4s-1g-1,這種增強的催化活性歸因於銅奈米金屬顆粒大小和附載量,以及擴孔後的中孔洞SBA-16的高比表面積和籠型孔結構。
摘要(英)
There are two part of my study. In the first part, hydrogen is highly considered as the most important issue in fuel cell. Apart from this, ammonia borane is a popular reagent owing to its high hydrogen density up to ~19.6 wt%. In the field of catalytic hydrogen generation, cobalt nanoparticles (Co NPs) based materials are usually high potential candidates for hydrolysis of ammonia borane. However, the stability issue of Co NPs due to the particle aggregation resulting uncontrollable activity. Therefore, we here report the convenient way synthesis of Co NPs through one-step chemical reduction which is adsorbed in 3D mesoporous silica KIT-6 (denoted as Co@KIT-6) to keep maintain the high efficiency. Under wet impregnation process, KIT-6 support was immersed in cobalt ion precursor and the adsorbed cobalt ion into inside the pores was then chemically reduced using mixed reagent containing NaBH4 and NH3BH3 to obtain Co@KIT-6. It was found that the use of KIT-6 support can highly enhance the dispersion and efficiency due to its high surface area 880 m2g-1 and pore volume 0.9 cm3g-1. In addition, KIT-6 with the internal Pore size of 6 nm may separate confine the Co NPs and subsequently avoid the aggregation. Because cobalt is regulated in 3D structure, it can suffer from rapid deactivation and promote catalytic activity to reach high reuse times. According to X-ray diffraction pattern and TEM image, it can be confirmed that the particle size of Co NPs is about sub-1 nm and highly dispersed without aggregation. The turnover frequency (TOF) and activation energy (Ea) of Co@KIT-6 for the hydrolysis of ammonia borane reach almost 20 molH2 molCo-1 min-1 and 35 kJ mol-1. In this study, Co@KIT-6 exhibits a high promising catalyst for hydrogen generation from ammonia borane.
In the second part, ultra-small Cu nanoparticles (Cu NPs) are controllably supported in the cage-type mesopores of –COOH functionalized large pore mesoporous silica SBA-16 (denoted as Cu@LP-S16C-x) via wet impregnation under alkaline conditions, followed by the calcination-reduction process. The particle size of Cu NPs ranges from 2 to 7 nm, depending on the Cu loadings. Under an appropriate alkaline condition, i.e., pH 9, the deprotonation of carboxylic acid functional groups on the cage-type mesopore surface endows effective incorporation of the Cu2+ precursors via favorable electrostatic interactions. The combination of cage-type mesopores and surface functionality offers double beneficial features of confining the immobilized Cu NPs and tuning their particle sizes. The catalytic results of the Cu NPs based large pore SBA-16 materials towards 4-nitrophenol reduction show that both the particle size of Cu NPs and the textural properties of the support have important influence on the catalytic activity. As the catalyst for the reduction of 4-NP, the Cu@LP-S16C-x exhibited a very high catalytic activity with the activity parameter of 1296.4 s-1g-1, which is remarkably high as compared to the Cu based catalysts reported in the literature. This enhanced catalytic activity might be attributed to the size and loading amount of Cu NPs, and high specific surface area and cage-type pore structure of large pore SBA-16.
關鍵字(中) ★ 中孔洞二氧化矽
★ 硼烷氨水解
★ 4-硝基苯分還原
關鍵字(英) ★ mesoporous silica
★ ammonia borane
★ hydrogen generation
★ 4-nitrophenol reduction
論文目次 中文摘要 I
ABSTRACT II
謝誌 IV
目錄 V
圖目錄 X
表目錄 XIX
第一章 序論 1
1-1 中孔洞二氧化矽 1
1-1-1 中孔洞材料之介紹 1
1-1-2 中孔洞二氧化矽合成方法 2
1-1-3 軟性模板-微胞結構 3
1-2 三維中孔洞二氧化矽 5
1-2-1 二維與三維差異 5
1-2-2 三維結構KIT-6 6
1-2-3 三維結構SBA-16 7
1-3 鈷催化硼烷氨文獻回顧 8
1-3-1 利用載體提升非貴重金屬的活性 8
1-3-2 金屬離子含量比例與酸鹼性的影響 10
1-3-3 奈米鈷金屬還原方法 12
1-3-4 2D與3D載體結構影響催化活性 15
1-4 銅催化還原4-硝基苯酚文獻回顧 17
1-4-1 4-硝基苯酚介紹 17
1-4-2 4-硝基苯酚還原機制介紹 18
1-4-3 奈米金屬銅催化還原4-硝基苯酚介紹 19
1-5 研究動機與目的 25
第二章 實驗部分 26
2-1 實驗藥品 26
2-2 鈷金屬催化硼烷氨水解實驗 28
2-2-1 三維立方體Ia3d中孔洞矽材KIT-6合成 28
2-2-2 以CoCl2.6H2O做為前驅物還原至KIT-6之中 29
2-2-2.1 利用雙還原劑化學還原法 29
2-2-2.2 利用單一還原劑化學還原法 31
2-2-2.3 利用熱還原法還原奈米金屬鈷 32
2-2-3 以Co(NO3)2.6H2O做為前驅物還原至KIT-6之中 33
2-2-3.1 利用雙還原劑化學還原法 33
2-2-3.2 利用單一還原劑化學還原法 33
2-2-3.3 利用熱還原法還原奈米金屬鈷 34
2-2-4 催化硼烷氨水解產氫實驗 35
2-2-4.1 產氫裝置支架設 35
2-2-4.2 催化硼烷氨水解產氫實驗 36
2-2-4.3 回收觸媒再利用實驗 38
2-3 銅金屬催化4-硝基苯酚還原實驗 39
2-3-1 合成具羧酸官能基且擴孔的SBA-16 39
2-3-2 合成具羧酸官能基且擴孔的SBA-16 40
2-3-3 利用LP-S16C-x含浸銅金屬製備奈米金屬銅顆粒 40
2-3-4 利用Cu@LP-S16C-x催化還原4-硝基苯酚實驗 41
2-3-5 Cu(5)@LP-S16C-20重複使用實驗 43
2-4 實驗設備 43
2-4-1 實驗合成設備 43
2-4-2 實驗鑑定儀器 44
第三章 結果與討論 45
3-1 Co(x)@KIT-6催化系列 45
3-1-1 基本性質鑑定 46
3-1-1.1 KIT-6 SAXRD繞射圖譜 46
3-1-1.2 CoCl2‧6H2O作為前驅溶液的SAXRD繞射圖譜 47
3-1-1.3 Co(NO3)2‧6H2O作為前驅溶液的SAXRD繞射圖譜 51
3-1-1.4 CoCl2‧6H2O作為前驅溶液的WAXRD繞射圖譜 53
3-1-1.5 Co(NO3)2‧6H2O作為前驅溶液的WAXRD繞射圖譜 59
3-1-1.6 Co(x)@KIT-6氮氣吸脫附圖譜 62
3-1-1.7 SEM影像 67
3-1-1.8 利用雙還原劑還原CoCl2‧6H2O的TEM影像 68
3-1-1.9 利用單還原劑與熱還原法還原CoCl2‧6H2O的TEM影像 73
3-1-1.10 前驅物為Co(NO3)2‧6H2O的Co(x)@KIT-6 TEM影像 75
3-1-1.11 XPS電子能譜 78
3-1-2 磁性鑑定 80
3-1-3 不同前驅液與不同還原法硼烷氨水解產氫比較 82
3-1-3.1 CoCl2‧6H2O前驅液還原Co(x)@KIT-6產氫 83
3-1-3.2 Co(NO3)2‧6H2O前驅液還原Co(x)@KIT-6產氫 87
3-1-3.3 不同載體-2D vs 3D 89
3-1-3.4 不同前驅液與不同還原法 90
3-1-4 雙還原劑還原CoCl2‧6H2O催化硼烷氨水解產氫 93
3-1-4.1 不同濃度不同濃度對Co(5)@KIT-6的影響 95
3-1-4.2 Co(5)@KIT-6的反應級數 98
3-1-4.3 Co(5)@KIT-6的活化能 103
3-1-5 雙還原劑還原CoCl2‧6H2O的回收利用 106
3-1-5.1 Co(5)@KIT-6 5th回收利用產氫 106
3-1-5.2 Co(5)@KIT-6 5th XRD繞射圖譜 107
3-1-5.3 Co(5)@KIT-6 5th TEM圖 108
3-2 Cu@LP-S16C-x催化系列 110
3-2-1 LP-S16C-x基本性質鑑定 110
3-2-1.1 SAXRD繞射圖譜 110
3-2-1.2 13C CP/MAS NMR 112
3-2-1.3 29Si MAS NMR 114
3-2-1.4 等溫氮氣吸脫附 116
3-2-1.5 FT-IR紅外線光譜 118
3-2-1.6 熱重分析 120
3-2-1.7 SEM影像 121
3-2-1.8 TEM影像 123
3-2-2 Cu@LP-S16C-x基本性質鑑定 125
3-2-2.1 SAXRD繞射圖譜 125
3-2-2.2 WAXRD繞射圖譜 127
3-2-2.3 等溫氮氣吸脫附 130
3-2-2.4 SEM影像 134
3-2-2.5 TEM影像 135
3-2-3 Cu@LP-S16C-x催化4-硝基苯酚還原 140
3-2-3.1 Cu(x)@LP-S16C-0系列 140
3-2-3.2 Cu(10)@LP-S16C-x系列 144
3-2-3.3 Cu(5)@LP-S16C-x系列 147
3-2-4 Cu(5)@LP-S16C-20回收利用催化4-硝基苯酚還原 150
3-2-4.1 Cu(5)@LP-S16C-20回收利用的催化時間 150
3-2-4.2 Cu(5)@LP-S16C-20-R5之WAXRD 152
3-2-4.3 Cu(5)@LP-S16C-20-R5的TEM圖譜。 153
第四章 結論 154
第五章 參考文獻 155
參考文獻

1. M. Li, J. Hu and H. Lu, "A stable and efficient 3D cobalt-graphene composite catalyst for the hydrolysis of ammonia borane", Catalysis Science & Technology, 2016, 6, 7186-7192.
2. D. Saikia, Y.-Y. Huang, C.-E. Wu and H.-M. Kao, "Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol", RSC Advances, 2016, 6, 35167-35176.
3. H. Wang, Y. Zhao, F. Cheng, Z. Tao and J. Chen, "Cobalt nanoparticles embedded in porous N-doped carbon as long-life catalysts for hydrolysis of ammonia borane", Catalysis Science & Technology, 2016, 6, 3443-3448.
4. M. V. Parmekar and A. V. Salker, "Room temperature complete reduction of nitroarenes over a novel Cu/SiO2@NiFe2O4 nano-catalyst in an aqueous medium - a kinetic and mechanistic study", RSC Advances, 2016, 6, 108458-108467.
5. P. S. Nabavi Zadeh and B. Åkerman, "Immobilization of Enzymes in Mesoporous Silica Particles: Protein Concentration and Rotational Mobility in the Pores", The Journal of Physical Chemistry B, 2017, 121, 2575-2583.
6. H. Gu, H. F. Ji, Y. L. Deng and R. J. Dai, "Synthesis of mesoporous silica material with hydrophobic external surface and hydrophilic internal surface for protein adsorption", Materials Technology, 2014, 29, 21-24.
7. Y.-C. Yang, J. R. Deka, C.-E. Wu, C.-H. Tsai, D. Saikia and H.-M. Kao, "Cage like ordered carboxylic acid functionalized mesoporous silica with enlarged pores for enzyme adsorption", Journal of Materials Science, 2017, 52, 6322-6340.
8. S. Hao, A. Verlotta, P. Aprea, F. Pepe, D. Caputo and W. Zhu, "Optimal synthesis of amino-functionalized mesoporous silicas for the adsorption of heavy metal ions", Microporous and Mesoporous Materials, 2016, 236, 250-259.
9. Z. Liang, W. Shi, Z. Zhao, T. Sun and F. Cui, "The retained templates as “helpers” for the spherical meso-silica in adsorption of heavy metals and impacts of solution chemistry", Journal of Colloid and Interface Science, 2017, 496, 382-390.
10. E. Da′na, "Adsorption of heavy metals on functionalized-mesoporous silica: A review", Microporous and Mesoporous Materials, 2017, 247, 145-157.
11. H. Zhou, S. Zhu, I. Honma and K. Seki, "Methane gas storage in self-ordered mesoporous carbon (CMK-3)", Chemical Physics Letters, 2004, 396, 252-255.
12. M. Oschatz, E. Kockrick, M. Rose, L. Borchardt, N. Klein, I. Senkovska, T. Freudenberg, Y. Korenblit, G. Yushin and S. Kaskel, "A cubic ordered, mesoporous carbide-derived carbon for gas and energy storage applications", Carbon, 2010, 48, 3987-3992.
13. D. Karimian, B. Yadollahi and V. Mirkhani, "Dual functional hybrid-polyoxometalate as a new approach for multidrug delivery", Microporous and Mesoporous Materials, 2017, 247, 23-30.
14. N. V. Jadhav and P. R. Vavia, "Dodecylamine Template-Based Hexagonal Mesoporous Silica (HMS) as a Carrier for Improved Oral Delivery of Fenofibrate", AAPS PharmSciTech, 2017, DOI: 10.1208/s12249-017-0761-x, 1-10.
15. D. H. Everett, "Manual of Symbol and Terminology for Physicochemical Quantities and Units Appendix II Definitions, Terminology and Symbols in Colloid and Surface Chemistry PART I", Pure Apple. Chem., 1972, 31, 578-638.
16. M. R. Lukatskaya, B. Dunn and Y. Gogotsi, "Multidimensional materials and device architectures for future hybrid energy storage", Nature Communications, 2016, 7, 12647.
17. 黃昱源、吳嘉文, "中孔洞奈米材料之孔洞方向控制及其應用", 科學發展, 2015, 513, 16-21.
18. L. V.-E. Juan, C. Ya-Dong, C. W. W. Kevin and Y. Yusuke, "Recent progress in mesoporous titania materials: adjusting morphology for innovative applications", Science and Technology of Advanced Materials, 2012, 13, 013003.
19. W. Li and D. Zhao, "An overview of the synthesis of ordered mesoporous materials", Chemical Communications, 2013, 49, 943-946.
20. M. H. S. Tarek A. Fayed, Marwa N. El‑Nahass, Fathy M. Hassan, "Hybrid organic–inorganic mesoporous silicates as optical nanosensor for toxic metals detection", Chemical and Applied Biological Sciences, 2014, 1, 1-74.
21. H. W. D. Fennell Evans, The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, 1999.
22. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, "A new family of mesoporous molecular sieves prepared with liquid crystal templates", Journal of the American Chemical Society, 1992, 114, 10834-10843.
23. S.-H. Wu, C.-Y. Mou and H.-P. Lin, "Synthesis of mesoporous silica nanoparticles", Chemical Society Reviews, 2013, 42, 3862-3875.
24. P. Innocenzi, L. Malfatti, T. Kidchob and P. Falcaro, "Order−Disorder in Self-Assembled Mesostructured Silica Films: A Concepts Review", Chemistry of Materials, 2009, 21, 2555-2564.
25. T.-W. Kim, F. Kleitz, B. Paul and R. Ryoo, "MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure:  Facile Synthesis Domain in a Ternary Triblock Copolymer−Butanol−Water System", Journal of the American Chemical Society, 2005, 127, 7601-7610.
26. L. Almar, B. Colldeforns, L. Yedra, S. Estrade, F. Peiro, A. Morata, T. Andreu and A. Tarancon, "High-temperature long-term stable ordered mesoporous Ni-CGO as an anode for solid oxide fuel cells", Journal of Materials Chemistry A, 2013, 1, 4531-4538.
27. T.-W. Kim, R. Ryoo, M. Kruk, K. P. Gierszal, M. Jaroniec, S. Kamiya and O. Terasaki, "Tailoring the Pore Structure of SBA-16 Silica Molecular Sieve through the Use of Copolymer Blends and Control of Synthesis Temperature and Time", The Journal of Physical Chemistry B, 2004, 108, 11480-11489.
28. J. Sun, Q. Zhang, R. Ding, H. Lv, H. Yan, X. Yuan and Y. Xu, "Contamination-resistant silica antireflective coating with closed ordered mesopores", Physical Chemistry Chemical Physics, 2014, 16, 16684-16693.
29. M. Chandra and Q. Xu, "A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia–borane", Journal of Power Sources, 2006, 156, 190-194.
30. Q. Xu and M. Chandra, "Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia–borane at room temperature", Journal of Power Sources, 2006, 163, 364-370.
31. S. B. Kalidindi, M. Indirani and B. R. Jagirdar, "First Row Transition Metal Ion-Assisted Ammonia−Borane Hydrolysis for Hydrogen Generation", Inorganic Chemistry, 2008, 47, 7424-7429.
32. X. Li, Z. Niu, J. Jiang and L. Ai, "Cobalt nanoparticles embedded in porous N-rich carbon as an efficient bifunctional electrocatalyst for water splitting", Journal of Materials Chemistry A, 2016, 4, 3204-3209.
33. Z.-L. Wang, J.-M. Yan, H.-L. Wang and Q. Jiang, "Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion", Journal of Power Sources, 2013, 243, 431-435.
34. P.-J. Yu, M.-H. Lee, H.-M. Hsu, H.-M. Tsai and Y. W. Chen-Yang, "Silica aerogel-supported cobalt nanocomposites as efficient catalysts toward hydrogen generation from aqueous ammonia borane", RSC Advances, 2015, 5, 13985-13992.
35. A. f. T. S. a. D. R. (ATSDR). "ToxFAQsTM for Nitrophenols", Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service, 1995.
36. S. B. Khan, S. A. Khan, H. Marwani, E. M. Bakhsh, Y. Anwar, T. Kamal, A. M. Asiri and K. Akhtar, "Anti-bacterial PES-cellulose composite spheres: dual character toward extraction and catalytic reduction of nitrophenol", RSC Advances, 2016, 6, 110077-110090.
37. X. H. Zhao, Q. Li, X. M. Ma, Z. Xiong, F. Y. Quan and Y. Z. Xia, "Alginate fibers embedded with silver nanoparticles as efficient catalysts for reduction of 4-nitrophenol", RSC Advances, 2015, 5, 49534-49540.
38. R. Prucek, L. Kvitek, A. Panacek, L. Vancurova, J. Soukupova, D. Jancik and R. Zboril, "Polyacrylate-assisted synthesis of stable copper nanoparticles and copper(I) oxide nanocubes with high catalytic efficiency", Journal of Materials Chemistry, 2009, 19, 8463-8469.
39. Z. V. Feng, J. L. Lyon, J. S. Croley, R. M. Crooks, D. A. Vanden Bout and K. J. Stevenson, "Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles. An Undergraduate Experiment Exploring Catalytic Nanomaterials", Journal of Chemical Education, 2009, 86, 368.
40. X. Yang, H. Zhong, Y. Zhu, H. Jiang, J. Shen, J. Huang and C. Li, "Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles", Journal of Materials Chemistry A, 2014, 2, 9040-9047.
41. B. Liu, S. Yu, Q. Wang, W. Hu, P. Jing, Y. Liu, W. Jia, Y. Liu, L. Liu and J. Zhang, "Hollow mesoporous ceria nanoreactors with enhanced activity and stability for catalytic application", Chemical Communications, 2013, 49, 3757-3759.
42. H.-L. Jiang, T. Akita, T. Ishida, M. Haruta and Q. Xu, "Synergistic Catalysis of Au@Ag Core−Shell Nanoparticles Stabilized on Metal−Organic Framework", Journal of the American Chemical Society, 2011, 133, 1304-1306.
43. S. Tang, S. Vongehr, Z. Zheng, H. Liu and X. Meng, "Silver Doping Mediated Route to Bimetallically Doped Carbon Spheres with Controllable Nanoparticle Distributions", The Journal of Physical Chemistry C, 2010, 114, 18338-18346.
44. Y. Lin, Y. Qiao, Y. Wang, Y. Yan and J. Huang, "Self-assembled laminated nanoribbon-directed synthesis of noble metallic nanoparticle-decorated silica nanotubes and their catalytic applications", Journal of Materials Chemistry, 2012, 22, 18314-18320.
45. S. Tang, S. Vongehr and X. Meng, "Controllable incorporation of Ag and Ag-Au nanoparticles in carbon spheres for tunable optical and catalytic properties", Journal of Materials Chemistry, 2010, 20, 5436-5445.
46. L. Ai, H. Yue and J. Jiang, "Environmentally friendly light-driven synthesis of Ag nanoparticles in situ grown on magnetically separable biohydrogels as highly active and recyclable catalysts for 4-nitrophenol reduction", Journal of Materials Chemistry, 2012, 22, 23447-23453.
47. B. Zeynizadeh, M. Zabihzadeh and Z. Shokri, "Cu nanoparticles: a highly efficient non-noble metal catalyst for rapid reduction of nitro compounds to amines with NaBH4 in water", Journal of the Iranian Chemical Society, 2016, 13, 1487-1492.
48. J. R. Deka, H.-M. Kao, S.-Y. Huang, W.-C. Chang, C.-C. Ting, P. C. Rath and C.-S. Chen, "Ethane-Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acid Groups: Synthesis, Bifunctionalization, and Fabrication of Metal Nanoparticles", Chemistry – A European Journal, 2014, 20, 894-903.
49. M. Chandra and Q. Xu, "Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system", Journal of Power Sources, 2006, 159, 855-860.
50. C.-H. Tsai, W.-C. Chang, D. Saikia, C.-E. Wu and H.-M. Kao, "Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes", Journal of Hazardous Materials, 2016, 309, 236-248.
51. C.-M. Yang, B. Zibrowius, W. Schmidt and F. Schüth, "Stepwise Removal of the Copolymer Template from Mesopores and Micropores in SBA-15", Chemistry of Materials, 2004, 16, 2918-2925.
52. L. Ai and J. Jiang, "Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel", Bioresource Technology, 2013, 132, 374-377.
53. M. Ouyang, G. Liu, L. Lu, J. Li and X. Han, "Enhancing the estimation accuracy in low state-of-charge area: A novel onboard battery model through surface state of charge determination", Journal of Power Sources, 2014, 270, 221-237.
54. C.-H. Lin, J. R. Deka, C.-E. Wu, C.-H. Tsai, D. Saikia, Y.-C. Yang and H.-M. Kao, "Bifunctional Cage-Type Cubic Mesoporous Silica SBA-1 Nanoparticles for Selective Adsorption of Dyes", Chemistry – An Asian Journal, 2017, DOI: 10.1002/asia.201700286, n/a-n/a.
55. W. Yue and W. Zhou, "Crystalline mesoporous metal oxide", Progress in Natural Science, 2008, 18, 1329-1338.
56. L. Yang, N. Cao, C. Du, H. Dai, K. Hu, W. Luo and G. Cheng, "Graphene supported cobalt(0) nanoparticles for hydrolysis of ammonia borane", Materials Letters, 2014, 115, 113-116.
57. Ö. Metin and S. Özkar, "Water soluble nickel(0) and cobalt(0) nanoclusters stabilized by poly(4-styrenesulfonic acid-co-maleic acid): Highly active, durable and cost effective catalysts in hydrogen generation from the hydrolysis of ammonia borane", International Journal of Hydrogen Energy, 2011, 36, 1424-1432.
58. X. Yang, F. Cheng, Z. Tao and J. Chen, "Hydrolytic dehydrogenation of ammonia borane catalyzed by carbon supported Co core–Pt shell nanoparticles", Journal of Power Sources, 2011, 196, 2785-2789.
59. J. Hu, Z. Chen, M. Li, X. Zhou and H. Lu, "Amine-Capped Co Nanoparticles for Highly Efficient Dehydrogenation of Ammonia Borane", ACS Applied Materials & Interfaces, 2014, 6, 13191-13200.
60. N. Sahiner and S. Sagbas, "The use of poly(vinyl phosphonic acid) microgels for the preparation of inherently magnetic Co metal catalyst particles in hydrogen production", Journal of Power Sources, 2014, 246, 55-62.
61. M. Rakap and S. Özkar, "Hydroxyapatite-supported cobalt(0) nanoclusters as efficient and cost-effective catalyst for hydrogen generation from the hydrolysis of both sodium borohydride and ammonia-borane", Catalysis Today, 2012, 183, 17-25.
62. M. Rakap and S. Özkar, "Hydrogen generation from the hydrolysis of ammonia-borane using intrazeolite cobalt(0) nanoclusters catalyst", International Journal of Hydrogen Energy, 2010, 35, 3341-3346.
63. J. Liao, H. Li and X. Zhang, "Preparation of Ti supported Co film composed of Co nanofibers as catalyst for the hydrolysis of ammonia borane", Catalysis Communications, 2015, 67, 1-5.
64. Ö. Metin, M. Dinç, Z. S. Eren and S. Özkar, "Silica embedded cobalt(0) nanoclusters: Efficient, stable and cost effective catalyst for hydrogen generation from the hydrolysis of ammonia borane", International Journal of Hydrogen Energy, 2011, 36, 11528-11535.
65. S. Akbayrak, Y. Tonbul and S. Ozkar, "Ceria-supported ruthenium nanoparticles as highly active and long-lived catalysts in hydrogen generation from the hydrolysis of ammonia borane", Dalton Transactions, 2016, 45, 10969-10978.
66. J. Manna, S. Akbayrak and S. Ozkar, "Palladium(0) nanoparticles supported on polydopamine coated Fe3O4 as magnetically isolable, highly active and reusable catalysts for hydrolytic dehydrogenation of ammonia borane", RSC Advances, 2016, 6, 102035-102042.
67. H.-Y. Wu, F.-K. Shieh, H.-M. Kao, Y.-W. Chen, J. R. Deka, S.-H. Liao and K. C. W. Wu, "Synthesis, Bifunctionalization, and Remarkable Adsorption Performance of Benzene-Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acids", Chemistry – A European Journal, 2013, 19, 6358-6367.
68. N. Liu, R. A. Assink and C. J. Brinker, "Synthesis and characterization of highly ordered mesoporous thin films with -COOH terminated pore surfaces", Chemical Communications, 2003, DOI: 10.1039/B210377J, 370-371.
69. C.-S. Chen, C.-C. Chen, C.-T. Chen and H.-M. Kao, "Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups", Chemical Communications, 2011, 47, 2288-2290.
70. A. Espíndola-Gonzalez, A. L. Martínez-Hernández, C. Angeles-Chávez, V. M. Castaño and C. Velasco-Santos, "Novel Crystalline SiO(2) Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes", Nanoscale Research Letters, 2010, 5, 1408-1417.
71. A. Gangula, R. Podila, R. M, L. Karanam, C. Janardhana and A. M. Rao, "Catalytic Reduction of 4-Nitrophenol using Biogenic Gold and Silver Nanoparticles Derived from Breynia rhamnoides", Langmuir, 2011, 27, 15268-15274.
72. S. Pandey and S. B. Mishra, "Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum", Carbohydrate Polymers, 2014, 113, 525-531.
指導教授 高憲明(Hsien-Ming, Kao) 審核日期 2017-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明