博碩士論文 104223025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.116.239.195
姓名 陳俊安(Chun-An Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 可作為「鈣鈦礦太陽能電池」電洞傳輸材料之免摻雜醌共軛小分子
(Dopant-Free Quinoid-Based Hole Transporting Materials for Perovskite Solar Cells)
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含Benzimidazole之電子傳輸材料及其電激發光元件
★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發★ 有機薄膜電晶體高分子材料併環噻吩系列之開發
★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發
★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池
★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 利用不同含雙醛基π共軛剛硬片段,如苯、9,10取代蒽、2,6取代蒽、噻吩與引入不同長度碳鏈之雙苯酮化合物反應,可合成出雙咪唑化合物,隨後以普魯士藍試劑氧化,得到系列對稱醌化合物,一些化合物並經單經結構解析鑑定。這些化合物具有優異之熱穩定性,且在近紅外光區有很強的吸收。由於化合物有不錯之電洞傳輸性質,可做為鈣鈦礦太陽能電池之電洞傳輸材料。
醌化合物因中心剛硬平面結構,使分子間易發生π–π作用力產生堆疊, DIQ-C12化合物即因分子間π–π型堆疊架構,形成有利於電洞傳輸之通道。在不摻雜情況下以DIQ-C12為電洞傳輸材料元件光電轉換效率達到11.60%,相當接近經摻雜LiTFSI之標準品spiro-OMeTAD元件光電轉換效率11.88%,由於未添加親水性之LiTFSI,使得元件較spiro-OMeTAD標準元件的穩定性為佳。
摘要(英)
We try to use many kids of dialdehyde Various rigid π-linker (benzene, 9,10-anthracene, 2,6-anthracene, thiophene) functionalized with dialdehyde reacted with alkoxy substituted diaryl dione to form bis-imidazole derivatives, which were then oxidized by potassium ferricyanide to provide symmetric quinone compounds, some of them were also characterized by single crystal structural determination. These compound exhibit good thermal stability and have intense absorption in the near-infrared region. Due to good hole transport ability, the compounds were used as the hole transport materials for perovskite solar cells.
The rigid segment in the quinone compounds is beneficial to intermolecular π–π interaction and leads to aggregation of the molecules. The compound DIQ-C12 is an example with such π–π interaction framework, which forms hole transport channel. The perovskite solar cells using dopant- or additive-free DIQ-C12 as achieves a conversion of 11.66%, which is comparable with the standard cell using spiro-OMeTAD with LiTFSI as the additive (11.80). The cell of DIQ-C12 has better temporal stability because of the absence of hydrophilic LiTFSI.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 電洞傳輸材料
關鍵字(英)
論文目次
Abstract I
摘要 II
目錄 III
圖目錄 V
表目錄 VIII
附錄目錄 IX
第一章 緒論 1
1-1、前言 1
1-2、太陽能光譜 2
1-3、太陽能電池 3
1-3-1、矽晶類太陽能電池 4
1-3-2、半導體太陽能電池 5
1-3-3、有機染料太陽能電池 5
1-3-4、量子點太陽能電池 9
1.3-5、鈣鈦礦太陽能電池 9
1-4、鈣鈦礦太陽能電池簡介 9
1-4-1、鈣鈦礦太陽能電池元件組成 10
1-4-2、鈣鈦礦太陽能電池工作原理 14
1-4-3、鈣鈦礦太陽能參數介紹 14
1-5、研究動機 15
第二章 儀器設備與實驗方法說明 17
2-1、實驗設備儀器 17
2-2、實驗藥品 20
2-3、實驗步驟 21
2-4、太陽能電池元件製作 43
第三章 實驗結果與討論 44
3-1、電洞傳輸材料 44
3-1-1、電洞傳輸材料之合成方法 45
3-1-2 、涉及合成之關鍵反應 46
3-2、化合物結構解析 47
3-3、DIQ、DIAQ、DITQ系列之電洞傳輸材料物理性質 56
3-3-1、紫外光-可見光吸收光譜性質 56
3-3-2、光電子能譜實驗 (AC-2) 57
3-3-3、熱穩定性質 59
3-3-4、X光粉末繞射 60
3-4、DIQ系列元件效率與相關測量 63
3-5、Dimer化合物解析 68
第四章、結論 72
參考文獻 73
附錄 81
參考文獻

1. http://www.nrel.gov/
2. Fundamentals of Environmental Measurements - Solar Radiation & Photosynthetically Active Radiation - http://www.fondriest.com/environmental-measurements/parameters/weather/photosynthetically-active-radiation/
3. Green Rhino Energy - Defining standard spectra for solar panels - http://www.greenrhinoenergy.com/solar/radiation/spectra.php
4. H. Kallmans; M. Pope, “Photovoltaic effect in organic crystals”, J. Chem. Phys., 1958, 30, 585.
5. M. A. Green; K. Emery; Y. Hishikawa; W. Warta; E. D. Dunlop, “Proceeding of the 21st IEEE Photovoltaic Specialists Conference”, Orlando, USA: IEEE Publication, 1990.
6. D. M. Chapin; C. S. Fuller; G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys., 1954, 25, 676.
7. Q. Zhang; C. S. Dandeneau; S. Candelaria; D. Liu; B. B. Garcia; X. Zhou; Y.-H. Jeong; G. Cao, “Effects of Lithium Ions on Dye-Sensitized ZnO Aggregate Solar Cells” Chem. Mater., 2010, 22, 2427.
8. A. Kojima; K. Teshima; Y. Shirai; T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells” J. Am. Chem. Soc., 2009, 131, 6050.
9. H.-S. Kim; C.-R. Lee; J.-H. Im; K.-B. Lee; T. Moehl; A. Marchioro; S.-J. Moon; R. Humphry-Baker; J.-H. Yum; J. E. Moser; M. Grätzel; N.-G. Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%” Sci. Rep., 2012, 2, 591.
10. K. Masuko; M. Shigematsu; T. Mishima; N. Matsubara; T. T. Yamanishi; T.Takahama; M. Taguchi; E. Maruyama; S.Okamoto, “Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell”, IEEE J. Photovoltaics, 2014, 4, 1433.
11. W. Deng; D. Chen; Z. Xiong; P. J. Verlinden; J. W. Dong; F. Ye; H. Li; H. J. Zhu; M. Zhong; Y. Yang; Y. F. Chen; Z. Q. Feng, “Altermatt P. 20.8% PERC solar cell on 156mm x 156mm p-type nulticrystalline silicon substrate”, IEEE J. Photovoltaics, 2016, 6, 3.
12. T. Matsui; H. Sai; T. Suezaki; M. Matsumoto; K. Saito; I. Yoshida; M. Kondo,”Development of highly stable and efficient amorphous silicon based solar cells”, Proc. 28th European Photovoltaic Solar Energy Conference, 2013, 2213.
13. (a) Y. Cui; H. Yao; B. Gao; Y. Qin; S. Zhang; B. Yang; C. He; B. Xu; J. Hou, “Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell”, J. Am. Chem. Soc., 2017, 139, 7302. (b) W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, “Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells”, J. Am. Chem. Soc., 2017, 139, 7148.
14. H. Tsubomura; M. Mastsumumuera; Y. Nomura; T. Amamiya, “Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell”, Nature, 1976, 261, 402.
15. B. O. Regan; M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 1991, 353, 737.
16. M. K. Nazeeruddin; A. Key; I. Rodicio; R. Humphry-Baker; E. Mueller; P. Liska; N. Vlachopoulos; M. Grätzel, “Conversion of light to electricity bycis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN- and SCN-) on nanocrystalline titanium dioxide electrodes”, J. Am. Chem. Soc., 1993, 115, 6382.
17. M. K. Nazeeruddin; F. D. Angelis; S. Fantacci; A. Selloni; G. Viscardi; P. Liska; S. Ito; B. Takeru; M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, J .Am. Chem. Soc., 2005, 127, 16835.
18. M. K. Nazeeruddin; P. Péchy; T. Renouard; S. M. Zakeeruddin; R. Humphry-Baker; P. Comte; P. Liska; L. Cevey; E. Costa; V. Shklover; L. Spiccia; G. B. Deacon; C. A. Bignozzi; M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, J. Am. Chem. Soc., 2001, 123, 1613.
19. P. Wang; S. M. Zakeeruddin; J. E. Moser; M. K. Nazeeruddin; T. Sekiguchi; M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte”, Nat. Mater., 2003, 2, 402.
20. F. Gao; Y. Wang; D. Shi; J. Zhang; M.Wang; X. Jing; R. Humphry-Baker; P. Wang; S. M. Zakeeruddin; M. Grätzel, “Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells”, J. Am. Chem. Soc., 2008, 130, 10720.
21. C. Y. Chen; M. Wang; J. Y. Li; N. Pootrakulchote; L. Alibabaei; C. Ngoc-le; J. D. Decoppet; J. H. Tsai; C. Grätzel; C. G. Wu; S. M. Zakeeruddin; M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells”, ACS Nano, 2009, 3, 3103.
22. A. Yella; H. W. Lee; H. N. Tsao; C. Yi; A. K. Chandiran; M. K. Nazeeruddun; E.W. Diau; C. Y. Yeh; S. M. Zakeeruddin; M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency”, Science, 2011, 334, 629.
23. S. Mathew; A. Yella; P. Gao; R. Humphry-Baker; B. F. E. Curchod; N. Ashari-Astani; I. Tavernelli; U. Rothlisberger; M. K. Nazeeruddin; M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers”, Nat. Chem., 2014, 6, 242.
24. Z. Yao; H. Wu; Y. Li; J. Wang; J. Zhang; M. Zhang; Y. Guo and P. Wang, “Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity”, Energy Environ. Sci., 2015, 8, 3192.
25. K. Kakiage; Y. Aoyama; T. Yano; K. Oya; J. I. Fujisawab; M. Hanaya, “Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes”, Chem. Commun., 2015, 51, 15894.
26. J.-S. Ni, Y.-C. Yen, J. T. Lin, “Organic sensitizers with a rigid dithienobenzotriazole-based spacer for highperformance dye-sensitized solar cells”, J. Mater. Chem. A, 2016, 4, 6553.
27. J. Du; Z. Du;, J. S. Hu; Z. Pan; Q. Shen; J. Sun; D. Long; H. Dong; L. Sun; X. Zhong; L. J. Wan, “Zn–Cu–In–Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%”, J. Am. Chem. Soc., 2016, 138, 4201.
28. (a) A. R. bin Mohd Yusoff; M. K. Nazeeruddin, “Organic Halide Lead Pervoskites for Photovoltaic Applictions”, J. Phys. Chem. Lett., 2016, 7, 851. (b) H. Snaith, “Pervoskites: the Emergence of a New Era for Low-Cost High-Efficiency Solar Cells”, J. Phys. Chem. Lett., 2013, 4, 3623.
29. J. H. Im; C. R. Lee; J. W. Lee; S. W. Park; N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell“, Nanoscale, 2011, 3, 4088.
30. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, N. G. Park,” Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%” Sci. Rep., 2012, 49, 591.
31. (a) S. D. Stranks; G. E. Eperon; G. Grancini; C. Menelaou; M. J. P. Alcocer; T. Leijtens; L. M. Herz; A. Petrozza; H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber”, Science, 2013, 342, 341. (b) D. Shi; V. Adinolfi; R. Comin; M. Yuan; E. Alarousu; A. Buin; Y. Chen; S. Hoogland; A. Rothenberger; K. Katsiev; Y. Losovyj; X. Zhang; P. A. Dowben; O. F. Mohammed; E. H. Sargent; O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals”, Science, 2015, 347, 519.
32. M. Saliba; S. Orlandi; T. Matsui; S. Aghazada; M. Cavazzini; J.-P. Correa-Baena; P. Gao; R. Scopelliti; E. Mosconi; K.-H. Dahmen; F. De Angelis; A. Abate; A. Hagfeldt; G. Pozzi; M. Grätzel; M. K. Nazeeruddin, “A molecularly engineered hole-transporting material for e cient perovskite solar cells”, Nat. Energy, 2016, 1, 15017.
33. W. S. Yang; J. H. Noh; N. J. Jeon; Y. C. Kim; S. Ryu, J. Seo, S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange” Science, 2015, 348, 1234.
34. E. Edri; S. Kirmayer; D. Cahen; G. Hodes, “High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite”, J. Phys. Chem. Lett., 2013, 4, 897.
35. Y. Guo; C. Liu; K. Inoue; K. Harano; H. Tanaka; E. Nakamura, “ Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer”, J. Mater. Chem. A, 2014, 2, 13827.
36. (a) S. Kazim, M. K. Nazeeruddin, M. Grätzel, S. Ahmad,” Perovskite as light harvester: a game changer in photovoltaics”, Angew. Chem. Int. Ed., 2014, 53, 2812. (b) P. Gao, M. Grätzel, M. K. Nazeeruddin,” Organohalide lead perovskites for photovoltaic applications”, Energy Environ. Sci., 2014, 7, 2448.
37. Tokyo Chemical Industry Co., Ltd. - Reagents for Organic-Inorganic Perovskite, (MeNH3)PbX3 No.163(October 2014) - http://www.tcichemicals.com/zf/tw/support-download/tcimail/application/163-13.html
38. Y. S. Kwon; J. Lim; H. J. Yun;, Y. H. Kim; T. Park, “ A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite”, Energy Environ. Sci., 2014, 7, 1454.
39. (a) J. Seo; N. J. Jeon; W. S. Yang; H.-W. Shin; T. K. Ahn, J. Lee; J. H. Noh; S. I. Seok, “Effective Electron Blocking of CuPC-Doped Spiro-OMeTAD for Highly Efficient Inorganic–Organic Hybrid Perovskite Solar Cells” Adv. Energy Mater., 2015, 5, 1501320. (b) D. Bi; B. Xu; P. Gao; L. Sun; M. Grätzel; A. Hagfeldt, “Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%”, Nano Energy, 2016, 23, 138. (c) F. Zhang; X. Yang; M. Cheng; W. Wang; L. Sun, “Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode”, Nano Energy, 2016, 20, 108. (d) H. Li; K. Fu; A. Hagfeldt; M. Grätzel; S. G. Mhaisalkar; A. C. Grimsdale, “A Simple 3,4-Ethylenedioxythiophene Based Hole-Transporting Material for Perovskite Solar Cells”, Angew. Chem. Int. Ed., 2014, 53, 4085.
40. (a) V. Coropceanu; J. Cornil; D. A. da Silva Filho; Y. Olivier; R. Silbey; J.-L. Brédas, “Charge Transport in Organic Semiconductors”, Chem. Rev., 2007, 107, 926. (b) W. Wu, Y. Liu, D. Zhu,” π-Conjugated molecules with fused rings for organic field-effect transistors: design, synthesis and applications”, Chem. Soc. Rev., 2010, 39, 1489.
41. (a) W. Wu; Y. Liu; D. Zhu, “π-Conjugated molecules with fused rings for organic field-effect transistors: design, synthesis and applications”, Chem. Soc. Rev., 2010, 39, 1489. (b) V. Coropceanu ,J. C. Demetrio A. da S. Filho ,Y. Olivier, R. Silbey ,and J. L. Brédas,” Charge Transport in Organic Semiconductors”, Chem. Rev., 2007, 107, 926.
42. E. Ay; S. Furukawa; E. Nakamura, “Near-infrared absorbing heterocyclic quinoid donors for organic solar cell devices”, Org. Chem. Front., 2014, 1, 988.
43. J. Kulhánek; F. Bureš,“Imidazole as a parent π-conjugated backbone in charge-transfer chromophores”, Beilstein J. Org. Chem., 2012, 8, 25.
44. M. Kozaki; A. Isoyama; K. Akita; K. Okada,” Imidazole derivatives and their use of dopants for doping organic semiconductor matrix material”, Org. Lett., 2005, 7, 115.
45. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao , M. K. Nazeeruddin, M. Grätzel,” Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nat., 2013, 499, 316.
46. O. Meth-Cohn; S. P. Stanforth, “The Vilsmeier-Haack reaction. In: Trost BM, Fleming I, eds. New York: Pergamon Press”, Comp. Org. Synth., 1991, 2, 777.
47. G. Theilig,H. Bredreck,” Imidazolsynthesen mit Formamid (Formamid-Reaktionen, I. Mitteil.)”, Chem. Ber., 1953, 86, 88.
48. (a)M. D. Curtis, J. Cao, J. W. Kampf,”Solid-State Packing of Conjugated Oligomers: From π-Stacks to the Herringbone Structure” J. Am. Chem. Soc., 2004, 126, 4318. (b)Y. C. Chang, Y. D. Chen, C. H. Chen, Y. S. Wen, J. T. Lin, H. Y. Chen, M. Y. Kuo, I. Chao, ”Crystal Engineering for π-π Stacking via Interaction between Electron-Rich and Electron-Deficient Heteroaromatics”, J. Org. Chem., 2008, 73, 4608.
49. J. S. Ni, H. C. Hsieh, C. A. Chen, Y. S. Wen, W. T. Wu, Y. C. Shih, K. F. Lin,L. Wang, J. T. Lin,” Near-Infrared-Absorbing and Dopant-Free HeterocyclicQuinoid-Based Hole-Transporting Materials for EfficientPerovskite Solar Cells”, ChemSusChem, 2016, 9, 3139.
50. S. Chaurasia, C.-J. Liang, Y.-S. Yen, J. T. Lin,”Sensitizers with rigidified-aromatics as the conjugated spacers for dye-sensitized solar cells” J. Mater. Chem. C, 2015, 3, 9765.
51. (a) Y. Liu, Q. Chen, H.-S. Duan, H. Zhou, Y. M. Yang, H. Chen, S Luo, T.-B. Song, L. Dou, Z. Hong, Y. Yang,“A donpant-free organic hole transport materials for efficient planar heterojunction perovskite solar cells“, J. Mater. Chem. A, 2015, 3, 11940. (b) D. Bi, A. Mishra, P. Gao, M. Franckevicius, C. Steck, S. M. Zakeeruddin, M. K. Nazeeruddin, P. Bäuerle, M. Grätzel, A. Hagfeldt,“High-Efficiency Perovskite Solar Cells Employing a S, N-Heteropentacene-based D-A Hole-Transport Material“ ChemSusChem, 2016, 9, 433. (c) S. Paek, M. A. Rub, H. Choi, S. A. Kosa, K. A. Alamry, J. W. Cho, P. Gao, J. Ko, A. M. Asiri, M. K. Nazeeruddin,“A dual-functional asymmetric squaraine-based low band gap hole transporting material for efficient perovksite solar cells“ Nanoscale, 2016, 8, 6335.
52. O. Y. Park, H. U. Kim, D.-H. Hwang,”PL Quenching of Poly(3-hexylthiophene) by 2,2’,7,7’-Tetradiphenylamino-9,9’-Bifluorenylidene”, Mol. Cryst. Liq. Cryst., 2014, 600, 129.
53. W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, S.-H. Wei, ”Halide perovskite materials for solar cells: a theoretical review”, J. Mater. Chem. A, 2015, 3, 8926.
54. M. L. Petrus, T. Bein, T. J. Dingemans, P. Docampo, ”A low cost azomethine-based hole transporting material for perovskite photovoliaics”, J. Mater. Chem. A, 2015, 3, 12159.
55. S. F. Volker, S. Collavini, J. L. Delgado, “Organic Charge Carriers for Perovskite Solar Cells” ChemSusChem, 2015, 8, 3012.
56. T. Malinauskas, M. Saliba, T. Matsui, M. Daskeviciene, S. Urnikaite, P. Gratia, R. Send, H. Wonneberger, I. Bruder, M. Grätzel, V. Getautis, M. K. Nazeeruddin, “Branched methoxydiphenylamine-substituted fluorine derivatives as hole transporting materials for high-performance perovskite solar cells”, Energy Environ. Sci., 2016, 9, 1681.
指導教授 林建村、陳銘洲(Jiann-T′suen Lin Ming-Chau Chen) 審核日期 2017-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明