博碩士論文 104223026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:3.12.148.42
姓名 楊庭菽(Ting-Shu, Yang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 合成應用於高分子太陽能電池的含苯並[1,2-b:4,5-b′]二噻吩為骨架之D-π-A共聚物
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 高分子太陽能電池中作為主動層的P型共軛高分子,其光電性質可藉由改變結構及分子量而調整。本研究利用8-bis(5-(2-ethylhexyl)
thiophen-2-yl)-2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene為Donor單元(D),5,8-dibromo-2,3-bis(4-(hexyloxy)phenyl)pyrido[3,4-b]pyrazine為Acceptor單元(A),合成出P11共聚物,並在D或A分別接上含有拉電子性的硫烷鏈或氟原子,合成出P12和P14共聚物,或同時接上硫烷鏈和氟原子的P15共聚物,並與本實驗室先前合成沒有thiophene bridge之P9和P10一起探討此六個共聚物的性質及光電表現。結果顯示含有thiophene bridge的P11和P12的共軛長度比P9和P10長,最大吸收波長往長波長移動,因此所組裝的元件有較高的Jsc值;含有拉電子性的氟原子之P15因其分子量最大,吸收係數高,形成主動層時結晶度良好,且與PC61BM形成彼此穿插且各自連續的網狀結構,組裝成元件有最高的Jsc值(11.70 mA/cm2)、FF值(0.53)及光電轉換效率為4.50%。另外,P2和P15共聚物分別可以藉由剛合成的Pd(PPh3)4為催化劑進行聚合反應,以及使用不同的混合溶劑(CHCl3/Hexane和THF/Hexane)進行索式萃取進而得到較高分子量的共聚物,組裝成元件時高分子量共聚物的元件效率(P2:1.67%, P15:4.31%)大於低分子量的元件效率(P2:0.91%, P15:2.43%)。
摘要(英)
The photovoltical performance of a P-type conjugated polymer can be tuned by changing the molecular structure and weight. In this study, 8-bis(5-ethylhexyl)thiophen-2-yl)-2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b′] dithiophene was used as a donor unit and bromo-2,3-bis(4-(hexyloxy) phenyl)pyrido[3,4-b]pyrazine was used as an acceptor to construct the copolymer P11. Furthermore, an electron-withdrawing alkylthio chain was attached on the donor to form P12, or adding electron-withdrawing fluorine atoms on the acceptor to prepare P14. P15 has alkylthio chain on the donor and fluorine on the acceptor. Combining these four new copolymers with P9 and P10 (without thiophenebridge) prepared in our lab before, the properties- photovoltical performance relationship were investigated. The results showed that the conjugation length of P11 and P12 which containing thiophene bridge was longer than P9 and P10, respectively therefore the corresponding solar cells have higher Jsc value. P15 has higher molecular weight, large absorption coefficient, good crystallinity and forms an interpenetrating bicontinuous network when blend with PC61BM. As a result, inverted cell based on P15 copolymer exhibits the highest Jsc value (11.70 mA/cm2), FF value (0.53) and conversion efficiency (4.50%) amongst the copolymers studied in this thesis. In addition, increasing the molecular weight of P2 by using the fresh prepared Pd(PPh3)4 as a catalyst, or by Soxhlet extraction of P15 with high polar solvent. We have proved the copolymers with higher molecular weight have the efficiency (P2:1.67%, P15:4.31%) higher than that of copolymers with lower molecular weight (P2:0.91%, P15:2.43%).
關鍵字(中) ★ 高分子太陽能電池
★ 含苯並二噻吩
★ 氟化
★ 硫烷鏈
★ 不同分子量的共聚物
關鍵字(英) ★ polymer solar cells
★ benzodithiophene
★ Fluorinated
★ alkylthio chain
★ different copolymers of molecular weight
論文目次 摘要 I
Abstract II
謝誌 IV
目錄 V
圖目錄 VIII
表目錄 XV
第一章 緒論 1
1-1、前言 1
1-2、高分子太陽能電池元件的架構 2
1-3、反式高分子太陽能電池的工作機制 4
1-4、太陽能電池的光伏參數 6
1-5、高分子塊材異質接面(Bulk Heterojunction)太陽能電池 10
1-6、具有好的光伏表現之高分子特性 12
1-7、高分子太陽能電池相關文獻探討 13
1-8、研究動機 24
第二章 實驗部分 27
2-1、實驗藥品 27
2-2、組裝反式BHJ元件之相關材料31
2-3、單元與共聚物單體之結構與簡稱 32
2-4、單體的合成 37
2-4-1. Donor 1單元的合成 37
2-4-2. Donor 2單元的合成 38
2-4-3. Donor 3單元的合成 42
2-4-4. Acceptor 1單元的合成 46
2-4-5. Acceptor 2單元的合成 47
2-4-6. Acceptor 3單元的合成 48
2-4-7. Pd(PPh3)4的合成 51
2-5、共聚物的合成 52
2-6、共聚物的純化方式 57
2-7、儀器分析與樣品製備 58
2-7-1. 核磁共振光譜 58
2-7-2. 紫外光/可見光/近紅外光吸收光譜 58
2-7-3. 膠體滲透層析分析 59
2-7-4. 熱重分析 61
2-7-5. 示差掃描熱分析 61
2-7-6. 電化學測試 62
2-7-7. X光繞射分析 63
2-7-8. 原子力顯微鏡 64
2-7-9. 塊材異質接面結構(BHJ)太陽能電池元件的組裝 65
2-7-10. 元件光伏參數的量測步驟 66
第三章 結果與討論 68
3-1、 共聚物的分子量 68
3-2、 共聚物的熱分解溫度測定 70
3-3、 共聚物的熱性質測定 72
3-4、 共聚物的光學性質探討 74
3-5、 共聚物的前置軌域能討 78
3-6、 共聚物TD-DFT理論計算所得之分子構型及前置軌域分佈圖ㄙ82
3-7、 以六個共聚物為吸光材料所組裝的反式高分子太陽能電池元件之光伏表現 89
3-7-1、共聚物的元件優化過程 89
3-7-2、共聚物組裝成元件優化所得的最高光伏表現探討 104
3-8、 主動層膜的表面形貌分析 106
3-9、 共聚物的結晶度探討 110
3-10、 不同分子量的P2和P15共聚物之光伏性質 118
第四章 結論 125
參考文獻 127
附錄 132
附錄1、NMR圖譜 132
附錄2、光電子光譜儀 146
附錄3、空間電荷限制電流 146
附錄4、P15-3RD元件的優化 148
參考文獻

[1].Germack, D. S.; Chan, C. K.; Hamadani, B. H.;Richter, L. J.; FischerD. A.; Gundlach, D. J.; DeLongchamp, D. M., “Substrate-Dependent Interface Composition and Charge Transport in Films for Organic Photovoltaics”, Appl. Phys. Lett. 2009, 94, 233303-1~233303-3.
[2].Xu, Z.; Chen, L. M.; Yang, G.; Huang, C. H.; Hou, J.; Wu, Y.; Li, G.; Hsu,C. S.; Yang, Y., “Vertical Phase Separation in Poly(3-hexyl thiophene)Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells”, Adv. Funct. Mater. 2009, 19, 1227-1234.
[3].Lee, T. W.; Noh, T.; Choi, B. K.; Kim, M. S.; Shin, D. W.; Kido, J.,“High-Efficiency Stacked White Organic Light-Emitting Diodes”, J. Appl. Phys. Lett. 2008, 92, 043301-1~043301-3.
[4].本實驗室論文: 105年-吳幼琦. “合成應用於溶液製程高分子太陽能電池的含苯並[1,2-b:4,5-b’]二噻吩基共聚物”.
[5].Yin, H.; Cheung, S. H.; Ngai, J. H. L.; Ho, C. H. Y.; Chiu, K. L.; Hao,X.; Li, H. W.; Cheng, Y.; Tsang, S. W.; So, S. K., “Thick-Film High-Performance Bulk-Heterojunction Solar Cells Retaining 90% PCEs of the Optimized Thin Film Cells“, Adv. Electron. Mater. 2017, 1700007.
[6].He, Y.J.; Chen, H. Y.; Hou, J. H.; Li, Y. F., “Indene-C60 Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells”, J. Am. Chem. Soc. 2010, 132, 1377-1382.
[7].Li, S.; Ye, L.; Zhao,W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. H., “Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells”, Adv. Mater. 2016, 28, 9423-9429.
[8].Siddiki, M. K.; Li, J.; Galipeau, D.; Qiao, Q., “A Review of Polymer Multijunction Solar Cells”, Energy Environ. Sci. 2010, 3, 867-883.
[9].Li, G.; Zhu, R.; Yang, Y., “Polymer Solar Cells”, Nature Photons. 2012, 6, 153-161.
[10].Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J., “Design Rules for Donors in Bulk- Heterojunction Solar Cells-Towards 10% Energy-Conversion Efficiency”, Adv. Mater. 2006, 18, 789-794.
[11].Li, G.; Rui, Z.; Yang, Y., “Polymer Solar Cells”, Nature Photonics.2012, 6, 153-161.
[12].Cheng, Y.; Yang, S.; Hsu, C., “Synthesis of Conjugated Polymers for Organic Solar Cell Applications”, Chem. Rev. 2009, 109, 5868-5923.
[13].Yu, G.; Gao, J.; Hummelen, J.; Wudl, F.; Heeger, A. J., “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science. 1995, 270, 1789-1791.
[14].Li, Y., “Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward Suitable Electronic Energy Levels and Broad Absorption”, Acc. Chem. Res. 2012, 45(5), 723-733.
[15].Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. H., “Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells”, J. Am. Chem. Soc. 2017, 139, 7148-7151.
[16].Wu, Y. Q.; Chen, H. C.; Yang, Y. S.; Chang, S. H.; Wu, C. G., “Comprehensive Study of Pyrido[3,4-b]pyrazine-Based D−π–A Copolymer for Efficient Polymer Solar Cells”, Journal of Polymer Science. 2016, 54, 1822-1833.
[17].Gu, J.; Yuan, J.; Ma, W., “Correlation between Polymer Molecular Weight and Optimal Fullerene in Efficient Polymer Solar Cells”, Org.Electron. 2016, 34, 229-236.
[18].Ye, L.; Zhang, S.; Huo, L.; Zhang, M.; Hou, J. H., “Molecular Design toward Highly Efficient Photovoltaic Polymers Based on Two-Dimensional Conjugated Benzodithiophene’’, Acc. Chem. Res. 2014, 47, 1595-1603.
[19].Jo, J. W.; Bae, S. H.; Liu, F.; Russell, T. P.; Jo, W. H., “Comparison of Two D−A Type Polymers with Each Being Fluorinated on D and A Unit for High Performance Solar Cells”, Adv. Funct. Mater. 2015, 25, 120-125.
[20].Cui, C.; Wong, W. Y.; and Li. Y. F., “Improvement of Open-circuit Voltage and Photovoltaic Properties of 2D-Conjugated Polymers by Alkylthio Substitution”, Energy Environ. Sci. 2014, 7, 2276-2284.
[21].Kawashima, K.; Fukuhara, T.; Suda, Y; Suzuki, Y.; Koganezawa, T.; Yoshida H.; Ohkita, H.; Osaka, I.; Takimiya, K., “Implication of Fluorine Atom on Electronic Properties, Ordering Structures, and Photovoltaic Performance in Naphthobisthiadiazole-Based Semiconducting Polymers”, J. Am. Chem. Soc. 2016, 138, 10265-10275.
[22].Carsten, B.; He, F.; Son, H. J.; Xu, T.; Yu, L., “Stille Polycondensation for Synthesis of Functional Materials”, Chem. Rev. 2011, 111, 1493-1528.
[23].http://highscope.ch.ntu.edu.tw/wordpress/?p=52090 , August 15th,2017.
[24].Wang, N.; Chen, W.; Shen, W.; Duan, L.; Qiu, M.; Wang, J.; Yang, C.; Dua, Z.; Yang, R., “Novel Donor–Acceptor Polymers Containing o-Fluoro-p-Alkoxyphenyl-Substituted Benzo[1,2-b:4,5-b′]dithiophene Units for Polymer Solar Cells with Power Conversion Efficiency Exceeding 9%”, J. Mater. Chem. A. 2016, 4, 10212-10222.
[25].He, Y.; Zhao, G.; Bo, P.; Li, Y., “High-Yield Synthesis and Electro chemical and Photovoltaic Properties of Indene-C 70 Bisadduct”, Adv. Funct. Mater. 2010, 20, 3383-3389.
[26].Yao, Y.; Dong, H.; Hu, W., “Ordering of Conjugated Polymer Molecules: Recent Advances and Perspectives”, Polym. Chem. 2013, 4, 5197-5205.
[27].http://www.amercrystalassn.org/documents/2014%20Meeting/YagerACA_05.pdf , August 15th, 2017.
[28].Li, W.; Yang, L.; Tumbleston, J. R.; Yan, L.; Ade, H.; You, W., “Controlling Molecular Weight of a High Efficiency Donor-Acceptor Conjugated Polymer and Understanding its Significant Impact on Photovoltaic Properties”, Adv. Mater. 2014, 26, 4456-4462.
[29].Huo, L.; Liu, T.; Fan, B.; Zhao, Z.; Sun, X.; Wei, D.; Yu, M.; Liu, Y.; Sun, Y., “Organic Solar Cells Based on a 2D Benzo [1,2-b:4,5-b′]difuranConjugated Polymer with High-Power Conversion Efficiency”, Adv. Mater. 2015, 27, 6969-6975.
[30].Tseng, W. H.; Chen, H. C.; Chien, Y. C.; Liu, C. C.; Peng, Y. K.; Wu, Y. S.; Chang, J. H.; Liu, S. H.; Chou, S. W.; Liu, C. L.; Chen,Y. H.; Wu C. I.; Chou, P. T., “Comprehensive Study of Medium-Bandgap Conjugated Polymer Merging a Fluorinated Quinoxaline with Branched Side Chains for Highly Efficient and Air-Stable Polymer Solar Cells”, J. Mater. Chem. A. 2014, 2, 20203-20212.
[31].Inaba1, K.; Kobayashi1, S.; Uehara, K.; Okada, A.; Reddy, S. L.; Endo,T., “High Resolution X-Ray Diffraction Analyses of (La,Sr)MnO3/ZnO/Sapphire (0001) Double Heteroepitaxial Films”, Advances in Materials Physics and Chemistry, 2013, 3, 72-89.
[32].Wang, Rui.; Di, Z. Y.; Buschbaum, M. P.; Frielinghaus, H., “Effect of PCBM Additive on Morphology and Optoelectronic Properties of P3HT-b-PS Films”, DOI: 10.1016/j.polymer.2017.06.016.
[33].Ye, L.; Zhang, S.; Qian, D.; Wang, Q.; Hou J. H., “Application of Bis-PCBM in Polymer Solar Cells with Improved Voltage”, J. Phys. Chem. C. 2013, 117, 25360-25366.
[34].Zhu, H. B.; Wu, Y. F.; Zhang, G.; Lou, Y. B.; Hu. J., “Side- Chain- Modulated Supramolecular Assembly Between CuX2 (X = Cl, Br) and Quasi-Planar p-Conjugated Organic Synthons of 1, 3, 5-tris(2-alkylthiolpyrimidinyl)benzene: Crystal Structures and Conductive Properties”, Polyhedron. 2015, 85, 60-68.
[35].Jo, J. W.; Jung, J. W.; Jung, E. H.; Ahn, H.; Shin, T. J.; Jo, W. H., “Fluorination on Both D and A Units in D-A Type Conjugated Copolymers Based on Difluorobithiophene and Benzothiadiazole for Highly Efficient Polymer Solar Cells”, Energy Environ. Sci. 2015, 8, 2427-2434.
[36].Wang, Z.; Li, Z.; Liu, J.; Mei, J.; Li, K.; Li, Y.; Peng, Q., “Solution-Processable Small Molecules for High-Performance Organic Solar Cells with Rigidly Fluorinated 2,2-Bithiophene Central Cores”, ACS Appl. Mater. Interfaces. 2016, 8, 11639-11648.
[37].Zhang, S.; Qin,Y.; Uddin, M. A.; Jang, B.; Zhao,W.; Liu, D.; Woo, H. Y. Hou. J. H., “A Fluorinated Polythiophene Derivative with Stabilized Backbone
Conformation for Highly Efficient Fullerene and Non-Fullerene Polymer Solar Cells”, Macromolecules. 2016, 49, 2993−3000.
[38].Xiao, Z.; Sun, K.; Subbiah, J.; Qin, T.; Lu, S.; Purushothaman, B.; Jones, D. J.; Holmes, A. B.; Wong, W. W. H., “Effect of Molecular Weight on the Properties and Organic Solar Cell Device Performance of a Donor–Acceptor Conjugated Polymer”, Polym. Chem. 2015, 6, 2312-2318.
[39].http://controlequipment.com.au/wp-content/uploads/2016/01/AC-2.pdf ,August 15th, 2017.
[40].本實驗室論文: 105年-楊昀修. “探討階梯式五環芳烴高分子使用溶液製程法應用於高效率有機光伏電池”. 28-29.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2017-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明