博碩士論文 104223030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.16.47.14
姓名 陳秀真(Hsiu-Chen, Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以金屬氧化物NiO和Mn3O4摻入有序中孔洞碳材作為鋰離子電池負極材料之應用
(Electrochemical Performance of Lithium Ion Batteries with Anode-based NiO and Mn3O4 nanoparticles confined in Ordered Mesoporous Carbons)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要探討利用含高理論電容氧化金屬參雜在有序結構規則中孔洞奈米碳材CMK-8用用至鋰離子二次電池負極材料上的複合材料,起初利用高分子界面活性劑P123做為軟性模板並以矽酸乙脂(Tetraethyl orthosilicate,簡稱為 TEOS)作為矽的來源,合成出有序的Ia3 ̅d特性的Cubic KIT-6 矽材,接著將矽材碳化之後得到CMK-8,再利用含浸法將金屬氧化物至入CMK-8孔洞中,利用XRD、BET、TEM來鑑定其結構是高表面積且規則的中孔洞碳才。
  本論文金屬氧化物包含兩種,分別是Mn3O4和NiO,利用硝酸鎳和硝酸錳作為含浸金屬氧化物的前驅物,依據不同濃度,0.25 M、0.1 M、0.05 M含浸到CMK-8的中孔洞及孔道當中,從XRD估算金屬氧化物顆粒大小,且以TEM來觀測,與之相符合,可以觀察到粒子大小會隨著濃度改變,電性表現也會因為顆粒的大小有所不同,比原本基材CMK-8的電性表現會提高,本篇論文會針對不同濃度及金屬氧化物顆粒大小利用做比較和結論。
摘要(英)
Lithium-ion batteries (LIBs) have been commonly used as power sources in portable electronics. Although ordered mesoporous carbon CMK-8 has been used as an anode for lithium-ion batteries, its theoretical capacity is only 372 mA h g-1. To improve the reversible capacity, cycling stability, and electrochemical performance of CMK-8 based anodes for applications in LIBs, two types of metal oxides such as NiO (theoretical capacity = 718 mA h g-1) and Mn3O4 (theoretical capacity = 937 mA h g-1) were chosen to embed into the mesopores of CMK-8 separately in this study. The mesopores of CMK-8 can effectively limit the particle growth of metal oxide and accommodate the volume variation of metal oxides during charge-discharge. Metal oxide@CMK-8 can also improve electronic conductivity. The metal oxide@CMK-8 materials were characterized by SEM, TEM, powder X-ray diffraction, and nitrogen adsorption-desorption measurements. The electrodes for LIBs were fabricated using a mixture of the active materials, namely metal oxide@CMK-8 materials (80 wt.%), carbon black (10 wt.%), and polyvinylidene fluoride (PVDF, 10 wt.%) in N-methyl-2-pyrrolidone (NMP) , The electrochemical performance was tested by assembling CR2032 coin cell.
關鍵字(中) ★ 鋰離子電池
★ 中孔洞碳材
★ 氧化金屬
★ 負極
關鍵字(英) ★ Lithium Ion Batteries
★ Mesoporous Carbons
★ Anode
論文目次
中文摘要 i
Abstract vi
目錄 viii
圖目錄 xii
表目錄 xvi
第一章 緒論 1
1-1 鋰離子電池簡介 1
1-2 研究目的 5
1-3 研究架構 7
第二章 文獻回顧 8
2-1 中孔洞碳材 8
2-1-1 奈米模鑄法 (Nanocasting) 11
2-2 負極材料 20
2-2-1 非碳材 20
2-2-1-1 鎳氧化物 20
2-2-1-2 錳氧化物 28
2-3 金屬氧化物在碳材改質方法 30
2-3-1 NiO@碳材改質法 30
2-3-2 Mn3O4@碳材改質法 37
第三章 實驗方法 42
3-1 藥品 42
3-2 奈米模鑄法合成三維孔道結構 (Ia3 ̅d)中孔洞碳材 44
3-2-1 三維立方體Ia3 ̅d中孔洞矽材模板KIT-6合成 44
3-2-2 三維立方體Ia3 ̅d中孔洞矽材模板CMK-8合成 44
3-3 含浸法合成NiO@CMK8負極複合物 46
3-4 含浸法合成Mn3O4@CMK8負極複合物 46
3-5 材料電化學測試 47
3-5-1 負極極片製作 47
3-5-2 硬幣型電池組裝 47
3-5-3 電池性能測試方法 49
3-5-4 定(變)電流充放電循環測試 49
3-5-4-1 電化學阻抗分析 (EIS) 49
3-5-4-2 循環伏安法 (CV) 49
3-6 實驗鑑定儀器 50
3-7 鑑定儀器之原理 51
3-7-1 同步輻射光束線54 51
3-7-2 X射線粉末繞射 (Powder X-Ray Diffractometer, XRD) 53
3-7-3 氮氣等溫吸脫附曲線、表面積與孔洞特性鑑定 55
3-7-4 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM)61 60
3-7-5 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)63 62
第四章 結果與討論 64
4-1 含浸法合成NiO@CMK8負極奈米複合物 64
4-1-1 低角度XRD 結果分析 64
4-1-2 高角度XRD 結果分析 66
4-1-3 氮氣等溫吸附/脫附結果分析 69
4-1-4 充放電前後SEM結果分析 72
4-1-5 TEM結果分析 74
4-1-6 XPS結果分析 77
4-1-7 固定電流下循環壽命 78
4-1-8 不同電流密度放電 85
4-1-9 循環伏安法分析 86
4-1-10 交流阻抗分析 88
4-1-11 充放電後SEM結果分析 90
4-2 含浸法合成Mn3O4@CMK8負極奈米複合物 92
4-2-1 低角度XRD 結果分析 92
4-2-2 高角度XRD 結果分析 94
4-2-3 氮氣等溫吸附/脫附結果分析 97
4-2-4 充放電前SEM結果分析 100
4-2-5 TEM結果分析 102
4-2-6 XPS 105
4-2-7 固定電流下循環壽命 106
4-2-8 不同電流密度放電 113
4-2-9 循環伏安法分析 114
4-2-10 交流阻抗分析 116
4-2-11 充放電後SEM結果分析 118
第五章 結論 120
第六章 參考文獻 121
參考文獻

1. L. Lu, X. Han, J. Li, J. Hua and M. Ouyang,A review on the key issues for lithium-ion battery management in electric vehicles, Journal of Power Sources, 2013, 226, 272-288.
2. A. C. C. Hua and B. Z. W. Syue, 2010.
3. Comparison Table of Secondary Batteries.
4. F. Wu, G. Tan, R. Chen, L. Li, J. Xiang and Y. Zheng,Novel Solid-State Li/LiFePO4 Battery Configuration with a Ternary Nanocomposite Electrolyte for Practical Applications, Advanced Materials, 2011, 23, 5081-5085.
5. G. Kucinskis, G. Bajars and J. Kleperis,Graphene in lithium ion battery cathode materials: A review, Journal of Power Sources, 2013, 240, 66-79.
6. R. Marom, S. F. Amalraj, N. Leifer, D. Jacob and D. Aurbach,A review of advanced and practical lithium battery materials, Journal of Materials Chemistry, 2011, 21, 9938-9954.
7. J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. Mohana Reddy, J. Yu, R. Vajtai and P. M. Ajayan,Ultrathin Planar Graphene Supercapacitors, Nano Letters, 2011, 11, 1423-1427.
8. R. Malini, U. Uma, T. Sheela, M. Ganesan and N. G. Renganathan,Conversion reactions: a new pathway to realise energy in lithium-ion battery—review, Ionics, 2009, 15, 301-307.
9. H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J. T. Robinson, Y. Liang, Y. Cui and H. Dai,Mn3O4−Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries, Journal of the American Chemical Society, 2010, 132, 13978-13980.
10. Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix and Y. Cui,Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life, Nano Letters, 2011, 11, 2949-2954.
11. B. Xu, C. R. Fell, M. Chi and Y. S. Meng,Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study, Energy & Environmental Science, 2011, 4, 2223-2233.
12. H. J. Shin, R. Ryoo, Z. Liu and O. Terasaki,Template Synthesis of Asymmetrically Mesostructured Platinum Networks, Journal of the American Chemical Society, 2001, 123, 1246-1247.
13. 什麼是石墨烯?, http://cmnst.ncku.edu.tw/files/14-1023-150985,r1924-1.php?Lang=zh-tw).
14. T. G. Lamond and H. Marsh,The surface properties of carbon—III the process of activation of carbons, Carbon, 1964, 1, 293-307.
15. Z. Hu, M. P. Srinivasan and Y. Ni,Preparation of Mesoporous High-Surface-Area Activated Carbon, Advanced Materials, 2000, 12, 62-65.
16. H. Marsh and B. Rand,The process of activation of carbons by gasification with CO2-II. The role of catalytic impurities, Carbon, 1971, 9, 63-77.
17. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto and H. Yasuda,Synthesis of Extremely Large Mesoporous Activated Carbon and Its Unique Adsorption for Giant Molecules, Chemistry of Materials, 1996, 8, 454-462.
18. A. Oya, S. Yoshida, J. Alcaniz-Monge and A. Linares-Solano,Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt, Carbon, 1995, 33, 1085-1090.
19. H. Tamon, H. Ishizaka, T. Yamamoto and T. Suzuki,Preparation of mesoporous carbon by freeze drying, Carbon, 1999, 37, 2049-2055.
20. R. W. Pekala,Organic aerogels from the polycondensation of resorcinol with formaldehyde, Journal of Materials Science, 1989, 24, 3221-3227.
21. J. Ozaki, N. Endo, W. Ohizumi, K. Igarashi, M. Nakahara, A. Oya, S. Yoshida and T. Iizuka,Novel preparation method for the production of mesoporous carbon fiber from a polymer blend, Carbon, 1997, 35, 1031-1033.
22. J. H. Knox, B. Kaur and G. R. Millward,Structure and performance of porous graphitic carbon in liquid chromatography, Journal of Chromatography A, 1986, 352, 3-25.
23. Prospects for Carbon as Packing Material in High-Performance Liquid Chromatography, Journal of Liquid Chromatography, 1983, 6, 1-36.
24. W.-C. Li, A.-H. Lu, C. Weidenthaler and F. Schüth,Hard-Templating Pathway To Create Mesoporous Magnesium Oxide, Chemistry of Materials, 2004, 16, 5676-5681.
25. C. Liang, K. Hong, G. A. Guiochon, J. W. Mays and S. Dai,Synthesis of a Large-Scale Highly Ordered Porous Carbon Film by Self-Assembly of Block Copolymers, Angewandte Chemie International Edition, 2004, 43, 5785-5789.
26. C. Liang and S. Dai,Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction, Journal of the American Chemical Society, 2006, 128, 5316-5317.
27. A. Firouzi, D. Kumar, L. Bull, T. Besier, P. Sieger, Q. Huo, S. Walker, J. Zasadzinski, C. Glinka, J. Nicol and a. et,Cooperative organization of inorganic-surfactant and biomimetic assemblies, Science, 1995, 267, 1138-1143.
28. A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke and B. F. Chmelka,Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures, Science, 1993, 261, 1299-1303.
29. Y. Wan and Zhao,On the Controllable Soft-Templating Approach to Mesoporous Silicates, Chemical Reviews, 2007, 107, 2821-2860.
30. J. Górka, A. Zawislak, J. Choma and M. Jaroniec,KOH activation of mesoporous carbons obtained by soft-templating, Carbon, 2008, 46, 1159-1161.
31. M. Tiemann,Repeated Templating, Chemistry of Materials, 2008, 20, 961-971.
32. Y. Shi, Y. Wan and D. Zhao,Ordered mesoporous non-oxide materials, Chemical Society Reviews, 2011, 40, 3854-3878.
33. J. Fan, J. Lei, C. Yu, B. Tu and D. Zhao,Hard-templating synthesis of a novel rod-like nanoporous calcium phosphate bioceramics and their capacity as antibiotic carriers, Materials Chemistry and Physics, 2007, 103, 489-493.
34. P. Strubel, S. Thieme, T. Biemelt, A. Helmer, M. Oschatz, J. Brückner, H. Althues and S. Kaskel,ZnO Hard Templating for Synthesis of Hierarchical Porous Carbons with Tailored Porosity and High Performance in Lithium-Sulfur Battery, Advanced Functional Materials, 2015, 25, 287-297.
35. L. L. Zhang and X. S. Zhao,Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews, 2009, 38, 2520-2531.
36. R. Ryoo, S. H. Joo and S. Jun,Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation, The Journal of Physical Chemistry B, 1999, 103, 7743-7746.
37. H. Darmstadt, C. Roy, S. Kaliaguine, S. J. Choi and R. Ryoo,Surface chemistry of ordered mesoporous carbons, Carbon, 2002, 40, 2673-2683.
38. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki,Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure, Journal of the American Chemical Society, 2000, 122, 10712-10713.
39. F. Kleitz, S. Hei Choi and R. Ryoo,Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes, Chemical Communications, 2003, DOI: 10.1039/B306504A, 2136-2137.
40. Y.-J. Han, J. M. Kim and G. D. Stucky,Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15, Chemistry of Materials, 2000, 12, 2068-2069.
41. H. Tüysüz, C. W. Lehmann, H. Bongard, B. Tesche, R. Schmidt and F. Schüth,Direct Imaging of Surface Topology and Pore System of Ordered Mesoporous Silica (MCM-41, SBA-15, and KIT-6) and Nanocast Metal Oxides by High Resolution Scanning Electron Microscopy, Journal of the American Chemical Society, 2008, 130, 11510-11517.
42. H.-D. Kim, T.-W. Kim, H. J. Park, K.-E. Jeong, H.-J. Chae, S.-Y. Jeong, C.-H. Lee and C.-U. Kim,Hydrogen production via the aqueous phase reforming of ethylene glycol over platinum-supported ordered mesoporous carbon catalysts: Effect of structure and framework-configuration, International Journal of Hydrogen Energy, 2012, 37, 12187-12197.
43. H. JooSang, J. ChoiSeong, OhIlwhan, KwakJuhyoun, LiuZheng, TerasakiOsamu and RyooRyong,correction: Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature, 2001, 414, 470-470.
44. S. A. Needham, G. X. Wang and H. K. Liu,Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries, Journal of Power Sources, 2006, 159, 254-257.
45. M. Balde, A. Vena and B. Sorli,Fabrication of porous anodic aluminium oxide layers on paper for humidity sensors, Sensors and Actuators B: Chemical, 2015, 220, 829-839.
46. B. Varghese, M. V. Reddy, Z. Yanwu, C. S. Lit, T. C. Hoong, G. V. Subba Rao, B. V. R. Chowdari, A. T. S. Wee, C. T. Lim and C.-H. Sow,Fabrication of NiO Nanowall Electrodes for High Performance Lithium Ion Battery, Chemistry of Materials, 2008, 20, 3360-3367.
47. S. Ni, T. Li, X. Lv, X. Yang and L. Zhang,Designed constitution of NiO/Ni nanostructured electrode for high performance lithium ion battery, Electrochimica Acta, 2013, 91, 267-274.
48. J. Gao, M. A. Lowe and H. D. Abruña,Spongelike Nanosized Mn3O4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries, Chemistry of Materials, 2011, 23, 3223-3227.
49. X. H. Huang, J. P. Tu, C. Q. Zhang and J. Y. Xiang,Net-structured NiO–C nanocomposite as Li-intercalation electrode material, Electrochemistry Communications, 2007, 9, 1180-1184.
50. M.-Y. Cheng and B.-J. Hwang,Mesoporous carbon-encapsulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery, Journal of Power Sources, 2010, 195, 4977-4983.
51. S. Tao, W. Yue, M. Zhong, Z. Chen and Y. Ren,Fabrication of Graphene-Encapsulated Porous Carbon–Metal Oxide Composites as Anode Materials for Lithium-Ion Batteries, ACS Applied Materials & Interfaces, 2014, 6, 6332-6339.
52. Z. Li, N. Liu, X. Wang, C. Wang, Y. Qi and L. Yin,Three-dimensional nanohybrids of Mn3O4/ordered mesoporous carbons for high performance anode materials for lithium-ion batteries, Journal of Materials Chemistry, 2012, 22, 16640-16648.
53. M. H. Alfaruqi, J. Gim, S. Kim, J. Song, P. T. Duong, J. Jo, J. P. Baboo, Z. Xiu, V. Mathew and J. Kim,One-Step Pyro-Synthesis of a Nanostructured Mn3O4/C Electrode with Long Cycle Stability for Rechargeable Lithium-Ion Batteries, Chemistry – A European Journal, 2016, 22, 2039-2045.
54. 國家同步輻射研究中心.
55. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, in Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2008, DOI: 10.1002/9783527610044.hetcat0065.
56. A. M. Lammert, S. J. Schmidt and G. A. Day,Water activity and solubility of trehalose, Food Chemistry, 1998, 61, 139-144.
57. L. G. Joyner, E. P. Barrett and R. Skold,The Determination of Pore Volume and Area Distributions in Porous Substances. II. Comparison between Nitrogen Isotherm and Mercury Porosimeter Methods, Journal of the American Chemical Society, 1951, 73, 3155-3158.
58. S. Agnihotri, M. J. Rood and M. Rostam-Abadi,Adsorption equilibrium of organic vapors on single-walled carbon nanotubes, Carbon, 2005, 43, 2379-2388.
59. Diffusive Sampling — A Review, American Industrial Hygiene Association Journal, 1987, 48, 214-218.
60. G. E. H. K. J. Weitkamp,Handbook of Heterogeneous Catalysis, 1997, vol 3, 1058.
61. R. V. Garver,Theory of TEM Diode Switching, IRE Transactions on Microwave Theory and Techniques, 1961, 9, 224-238.
62. S. A. Aseyev, P. M. Weber and A. A. Ischenko,Ultrafast Electron Microscopy for Chemistry, Biology and Material Science, Journal of Analytical Sciences, Methods and Instrumentation, 2013, Vol.03No.01, 24.
63. S. J. Erasmus and K. C. A. Smith,An automatic focusing and astigmatism correction system for the SEM and CTEM, Journal of Microscopy, 1982, 127, 185-199.
64. Z. Fu-Yun, W. Qi-Qi, Z. Xiao-Sheng, H. Wei, Z. Xin and Z. Hai-Xia,3D nanostructure reconstruction based on the SEM imaging principle, and applications, Nanotechnology, 2014, 25, 185705.
65. J.-H. Jang, B.-M. Chae, H.-J. Oh and Y.-K. Lee,Understanding conversion mechanism of NiO anodic materials for Li-ion battery using in situ X-ray absorption near edge structure spectroscopy, Journal of Power Sources, 2016, 304, 189-195.
66. S. J. P. Varapragasam, C. Balasanthiran, A. Gurung, Q. Qiao, R. M. Rioux and J. D. Hoefelmeyer,Kirkendall Growth of Hollow Mn3O4 Nanoparticles upon Galvanic Reaction of MnO with Cu2+ and Evaluation as Anode for Lithium-Ion Batteries, The Journal of Physical Chemistry C, 2017, 121, 11089-11099.
67. J.-G. Wang, D. Jin, R. Zhou, X. Li, X.-r. Liu, C. Shen, K. Xie, B. Li, F. Kang and B. Wei,Highly Flexible Graphene/Mn3O4 Nanocomposite Membrane as Advanced Anodes for Li-Ion Batteries, ACS Nano, 2016, 10, 6227-6234.
指導教授 高憲明(Hsien-Chen, Chen) 審核日期 2017-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明