博碩士論文 104223031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:52.14.61.160
姓名 蔡旻翰(Ming-Han Tsai)  查詢紙本館藏   畢業系所 化學學系
論文名稱 光聚合物包覆矽負極材料於高能鋰離子電池之研究
(Photo-polymer Encapsulation of Silicon Electrode Materials for Lithium ion Batteries)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,矽為倍受矚目的材料,因為矽負極高出於傳統石墨負極約十倍的理論電容量,但於充放電過程中,其高體積變化率很高以及不斷生成的SEI使矽材料粉末化,造成矽負極電池壽命不佳。本研究將探索一種新型的矽材料表面修飾方法,使用具可呼吸性網狀光聚合物保護矽負極材料期望可克服前述難題並將此技術應用於高能鋰離子電池。
本研究第一部分,將光聚合物(Bismaleimide, BMI)單體溶於溶劑中並吸附至矽粉末表面,再以光照聚合出具分歧網狀的結構,使其均勻包覆於矽負極材料。在充放電過程中,具彈性和呼吸性的保護層固定了因體積變化產生的破碎材料、避免矽材料與電解液直接接觸,並且形成較好、較薄的SEI層,經100迴圈充放電後,其SEI電阻值較小。這三種功能對於抑制活性材料溶解和保持矽負極電池的循環壽命,都具有關鍵性的貢獻,使材料還能夠在0.2C速率下300迴圈充放電後保有約830 mAh/g-Si。
第二部分,使用較短鏈的光聚合物單體(N,N′-1,3-Phenylene bismaleimide, HVA),作單聚合或與BMI共聚合反應,產生緊密程度不同於BMI的結構,藉交流阻抗分析與循環壽命測試,發現較緊密的包覆層,較不利於鋰離子的傳導,使得介面電阻提升,進而造成放電電容降低。
在光聚合物包覆層穩定負極基礎上, 本研究進一步探討具二維結構的石墨烯奈米帶(Graphene nanoribbon),作為新型導電添加劑,有效地增加電極材料導電度,達到電池電性表現提升的目標。
摘要(英)
Silicon Anode is considered as the most critical component for advanced lithium battery since it promises higher theoretical capacity over conventional graphite anode. However, Si suffers from huge volume variation and continuous formation of SEI layer during repeated lithiation/delithiation process, resulted in pulverization that quickly deteriorated the cyclic performance of lithium battery.
In the first part of this study, the monomer (Bismaleimide, BMI) of photo-polymer was dissolved in the solvent, adsorbed onto the surface of the silicon powder, and then polymerized with light illumination to form a breathable network-like structure that encapsulated the silicon anode material. During the charging and discharging process, the elastic and breathable protective layer retained the anode materials, avoided direct contact with the electrrolyte and formed a better and thinner SEI layer with less SEI resistance after 100 cycles. These functions are critical factors that contributes to the enhancement of cycle life of silicon based anode batteries. The Si@3p-BMI anode displayed highly stable capacity of ~830 mAh/g-Si up to 300 cycles under 0.2C charge rate.
In the second part of the study, a shorter chain monomer of photo-polymer (N,N′-1,3-Phenylene bismaleimide, HVA), for homopolymerization or copolymerization with BMI to produce coating layer with different tightness in structure. The influence of different photo-polymer coatings on the electrical properties of the cells was discussed. In AC impedance test and cycle life test, the tighter coated layer hindered ability of lithium ions transport, enhancing the interface resistance and reduced discharge capacitance.
On the basis of the stable anode of the photo-polymer coating layer, this study explores further the use of two-dimensional structure graphene nanoribbons (GRs), as a new type of conductive additives, which shows increased electronic conductivity and improved the electrical performance of the battery.
關鍵字(中) ★ 矽
★ 負極材料
★ 光聚合物
★ 石墨烯奈米帶
關鍵字(英) ★ Silicon
★ Anode
★ Photo-polymerization
★ Graphene nanoribbons
論文目次
摘要 I
Abstract III
致謝辭 V
目錄 VI
圖目錄 IX
表目錄 XII
第一章 緒論 1
1-1. 前言 1
1-2. 光聚合之介紹 3
1-3. 研究動機 4
第二章 原理介紹與文獻檢索 6
2-1. 合金型負極材料特點與種類 6
2-2. 矽(Si)負極材料 8
2-2-1. 不同尺寸與構型之修飾 8
2-2-2. 碳保護層包覆矽之修飾 12
2-2-3. 導電聚合物保護層包覆矽之修飾 20
2-3. 光聚合高分子材料 23
2-4. 研究動機與設計 28
第三章 實驗方法 30
3-1. 實驗藥品、器材與儀器設備 30
3-1-1. 實驗藥品 30
3-1-2. 實驗設備 34
3-1-3. 實驗器材 36
3-1-4. 鈕扣型電池組裝與測試 36
3-2. 實驗步驟 37
3-2-1. 矽奈米顆粒(SiNPs)製備 37
3-2-2. Si @ p-BMI 之製備 37
3-2-3. 石墨烯奈米帶(Graphene nanoribbons, GRs)之製備 38
3-2-4. SiGRs @ p-BMI 之製備 39
3-2-5. N-(4-Hydroxyphenyl)maleimide (4HPMI)之製備 39
3-2-6. 矽奈米顆粒表面修飾(官能基化) 40
第四章 結果與討論 41
4-1. 光聚合物之包覆形貌分析 41
4-1-1. 光聚合反應探討-1H & 13C NMR spectra 41
4-1-2. 材料表面元素鍵結探討-XPS 45
4-1-3. 材料官能基解析-FTIR 47
4-1-4. 材料表面構型與截面構型分析-SEM與TEM 48
4-2. 電化學性質分析 52
4-2-1. 循環伏安測試 52
4-2-2. 電池壽命測試 55
4-2-3. 交流阻抗測試 57
4-3. 充放電過後性質分析 60
4-3-1. 交流阻抗變化 60
4-3-2. 結構變化分析 63
4-4. 不同包覆層性質分析 65
4-4-1. 不同鏈長之包覆層材料對電性的影響 65
4-5. 添加石墨烯奈米帶(Graphene nanoribbon, GRs)之應用 67
4-5-1. 石墨烯奈米帶物性、結構分析-FTIR & SEM 67
4-5-2. 石墨烯奈米帶添加之截面結構鑑定 69
4-5-3. 石墨烯奈米帶添加之電化學性質分析 70
4-6. 矽奈米顆粒表面修飾之應用 73
4-6-1. 4HPMI合成1H NMR分析 74
4-6-2. 官能基化矽奈米顆粒之表面官能基解析-FTIR 75
4-6-3. 官能基化矽奈米顆粒之結構分析-TEM 77
第五章 結果與未來展望 80
參考文獻 82
參考文獻

1. Yanyan Zhang, Yuxin Tang, Wenlong Li, Bing Ma and Xiaodong Chen, Rational material design for ultrafast rechargeable lithium-ion batteries. Chemical Society Reviews, 2015. 44: p. 5926-5940.
2. Ermanno Miele, Subrahmanyam Goriparti, Francesco De Angelis, Enzo Di Fabrizio, Remo Proietti Zaccaria, Claudio Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources 2014. 257(1): p. 421-443.
3. Herman F. Mark, Encyclopedia of Polymer Science and Technology. Vol. 10. 2004.
4. Xingfeng Wang, Wei Luo, Colin Meyers, Nick Wannenmacher, Weekit Sirisaksoontorn, Michael M. Lerner and Xiulei Ji Efficient Fabrication of Nanoporous Si and Si/Ge Enabled by a Heat Scavenger in Magnesiothermic Reactions. Scientific Reports, 2013. 3.
5. Yasunobu Iwakoshi and Keijiro Sawai Tsutomu Ohzuku, Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell. Journal of The Electrochemical Society, 1993. 140(9): p. 2490-2498.
6. Shane Beattie, Dominique Larcher, Mathieu Morcrette, Kristina Edström, Jean-Claude Jumas and Jean-Marie Tarascon, Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. Journal of Materials Chemistry, 2007. 17: p. 3759-3772.
7. Jang Wook Choi and Doron Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials, 2016. 1.
8. Cao Cuong, Nguyen Taeho Yoon, Daniel M. Seo, and Brett L. Lucht Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries. Journal of The Electrochemical Society 2015. 162(12): p. A2325-A2330.
9. Hailin Peng, Candace K. Chan, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang, Robert A. Huggins and Yi Cui, High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology 2008. 3: p. 31-35.
10. Miao Zhang, Xianhua Hou, Jiyun Wang, Shejun Hua, Xiang Liu, Zongping Shao High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries. Journal of Alloys and Compounds 2015. 639: p. 27-35.
11. GePing Yin, YuHong Xu, YuLin Ma, PengJian Zuo, and XinQun Cheng Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. Journal of Materials Chemistry, 2010. 20: p. 3216-3220.
12. Nian Liu, Zhenda Lu, Hyun-Wook Lee, Jie Zhao, Weiyang Li, Yuzhang Li, and Yi Cui, Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes. ACS Nano, 2015. 9: p. 2540–2547.
13. Kai Yan, Yuzhang Li, Hyun-Wook Lee, Zhenda Lu, Nian Liu, and Yi Cui Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nature Energy 2016. 1.
14. Bo Li, Fei-Hu Du , Wei Fu , Yi-Jun Xiong , Kai-Xue Wang , and Jie-Sheng Chen, Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Li-Ion Battery Anodes with High Structure Stability. Advanced Materials, 2014. 26: p. 6145–6150.
15. Yuwen Luo, Zhen Liu, Mingjiong Zhou, Wenqin Wang, Ning Gan, Shigeto Okada, and Jun-ichi Yamaki Enhanced Performance of Yolk-Shell Structured Si-PPy Composite as an Anode for Lithium Ion Batteries. Electrochemistry 2015. 83(12): p. 1067-1070.
16. Tao Qian, Jinqiu Zhou, Mengfan Wang, Na Xu, Qi Zhang, Qun Li, and Chenglin Yan, Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016. 8(8): p. 5358–5365.
17. Guihua Yu, Hui Wu, Lijia Pan, Nian Liu, Matthew T. McDowell, Zhenan Bao, Yi Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature Communications 2013. 4.
18. Shi Zeng, Yao Chen, Jianfeng Qian, Yadong Wang, Yuliang Cao, Hanxi Yang, and Xinping Ai, Li+-Conductive Polymer-Embedded Nano-Si Particles as Anode Material for Advanced Li-ion Batteries. ACS Applied Materials & Interfaces, 2014. 6(5): p. 3508–3512.
19. Manmeet Kaur and A. K. Srivastava, PHOTOPOLYMERIZATION: A REVIEW. Journal of Macromolecular Science, Part C 2002. 42(4): p. 481-512.
20. Laura Buschhaus, Katharina Hunger, Nadine Schmeling, Claudia Staudt, Anna Pfeifera and Karl Kleinermanns, Characterization of maleimide dimers in photo-cross-linked copolyimide films. Physical Chemistry Chemical Physics, 2012. 14: p. 4538–4547.
21. Xiaofeng Ren, Yuanmei Cao, Hamideh Shokouhi Mehr, Mark D. Soucek, UV-Curable bismaleimides part I: Synthesis and photo-cure kinetics. Progress in Organic Coatings, 2016. 100: p. 118-128.
22. A. Ahmad, M. Imperiyka, S. A. Hanifah, M. Y A Rahman, Potential of UV-Curable Poly(Glycidyl Methacrylate-co-Ethyl Methacrylate)- Based Solid Polymer Electrolyte For Lithium Ion Battery Application. International Journal of Electrochemical Science, 2013. 8(9): p. 10932-10945.
23. Ewa Andrzejewska, Izabela Stepniak, Agata Dembna, Maciej Galinski, Characterization and application of N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide ionic liquid–based gel polymer electrolyte prepared in situ by photopolymerization method in lithium ion batteries. Electrochimica Acta, 2014. 121(1): p. 27-33.
24. Sueun Lee, Yuwon Park, Si-Hoon Kim, Bo Yun Jang, Joon Soo Kim, SeungM. Oh, Ju-Young Kim, Nam-Soon Choi, Kyu Tae Lee and Byeong-Su Kim, A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries. RSC Advances, 2013. 3: p. 12625-12630.
25. Werner Stober and Arthur Fink, Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. Journal of Colloid and Interface Science, 1968. 26(1): p. 62-69.
26. Amanda L. Higginbotham Dmitry V. Kosynkin, Alexander Sinitskii, Jay R. Lomeda, Ayrat Dimiev, B. Katherine Price and James M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009. 458: p. 872-876.
27. Issam Ahmed Mohammed and Asniza Mustapha, Synthesis of New Azo Compounds Based on N-(4-Hydroxypheneyl)maleimide and N-(4-Methylpheneyl)maleimide. Molecules, 2010. 15: p. 7498-7508.
28. 湯仁忠, 聚醯亞胺複合材料及含林雙馬來醯亞胺耐燃材料之製備與性質探討, 中原大學 化學系, 2006
29. Biao Gao, Lei Wang, Changjian Peng, Xiang Peng, Jijiang Fu, Paul K. Chu and Kaifu Huo, Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes. Nanoscale, 2015. 7: p. 13840-13847.
30. Byoung-Yong Chang and Su-Moon Park, Electrochemical Impedance Spectroscopy. Annual Review of Analytical Chemistry, 2010. 3: p. 207-229.
指導教授 諸柏仁(Po-Jen Chu) 審核日期 2017-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明