博碩士論文 104223046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.144.103.148
姓名 廖富祥(Fu-Siang Liao)  查詢紙本館藏   畢業系所 化學學系
論文名稱 藉由原位創新合成酵素有機金屬骨架複合材料探討蛋白質結構摺疊效應
(Shielding against Unfolding by Embedding Enzymes in Metal-Organic Frameworks via a de novo Approach)
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 酵素/生物固定化的技術於工業應用已有久遠的歷史!然而對此技術應用卻沒有相關的研究報導,關於酵素是如何存活於其中並且保持活性狀態而達到催化的效果。因此,根據本實驗室 2015 年成功利用類沸石咪唑骨架-90 (ZIF-90) 包覆蛋白質的經驗,發展出原位創新合成 (de novo approach) 的方法提供水相溫和的酵素包覆環境。所合成出酵素金屬骨架複合材料,不僅具有孔洞性質可將較小的基質 (Substrate) 送入其中以供過氧化氫酶 (Catalase, CAT) 催化,同時,可以防止大分子蛋白質水解酶的作用,而達到到保護酵素與維持催化的效果。藉由此原位創新合成為研究模組延伸進行更進一步的研究,進行酵素與骨架材料結合的複合材料對於酵素不友善的環境下的探討。
透過一系列的測試與探討,例如在高濃度尿素環境量測酵素活性,探討酵素的摺疊效應以及利用螢光光譜分析酵素結構,證明了藉由原位創新合成法,將酵素局限金屬有機骨架材料 (Metal-organic frameworks, MOFs) 之後,能夠在更嚴苛的條件環境下進行催化反應並且維持其活性。酵素的穩定性增強是來自於 MOFs 圍繞酵素分子而形成的中孔洞腔體將其封裝保護,降低了酵素分子結構的改變。將過氧化氫酶 (Catalase) 嵌入 ZIF-90/-8之中,然後將被包覆與否的過氧化氫酶置入變性試劑 (Denature reagent),例如尿素和高溫 (如80 ℃) 的環境下,可以發現即使存在於 6 M 尿素與80 ℃高溫環境,被包覆的過氧化氫酶 (即CAT@ZIF-90) 依然能夠保有其分解過氧化氫的活性,反應速率常數 (kobs) 分別為 1.30 × 10−3 和 1.05 × 10−3 sec-1,反觀未被包覆之過氧化氫酶則已失去催化活性。最後,為了更加直接了解酵素分子的結構變化,藉由過氧化氫酶的結構構形所深埋於內部之色胺酸 (Tryptophan) 影響,使用了螢光光譜研究證明,因為過氧化氫酶被 MOFs 所包覆,以至於在某些變性條件 (如尿素) 之下,結構構型變化相較於未被包覆之過氧化氫酶來得少,因此證明酵素在此方式的保護下依然能夠在嚴峻的環境下維持其生物活性。而實驗結果也再次證明了我們假設之理論的正確性,不但能利用生物複合材料保護了酵素,並且探討了材料對於酵素所提供的環境保護機制,創造出新穎、探討酵素生理機制的新模板。
摘要(英) For last decades, the enzyme/biological immobilization has been widely applied for industry such as textile, beverage, and food etc. However, it is unclear why the embedded enzyme still retain its biological activity. Regarding our previous publication in 2015, a de novo approach was used to encapsulate the enzyme into metal-organic frameworks (MOFs) crystals and able to maintain bioactivity of enzymes. In order to further study of biocomposite by using de novo approach as a model, this work is focusing on the effects of embedded enzyme activities under enzyme-unfriendly environment.
With a series of examinations, we found the enzyme is able to maintain its biological function under a wider range of conditions after being embedded in MOF microcrystals via a de novo approach. We suggest the enhancement of stability arise from confinement of enzyme molecules in the mesoporous cavities in the MOFs, which reduces the structural mobility of enzyme molecules. Additionally, we embedded catalase (CAT) into zeolitic imidazolate frameworks-90/8 (ZIF-90 and ZIF-8), and then exposed both embedded CAT and free CAT to a denature reagent, i.e., urea, and high temperatures, i.e., 80 °C. The embedded CAT still maintains the decomposition ability of hydrogen peroxide with apparent rate constants kobs (s−1) of 1.30 × 10−3 and 1.05 × 10−3 even when exposed to 6 M urea and 80 °C, respectively, in contrast, free CAT shows undetectable activity. A fluorescence spectroscopy study also had shown that the structure conformational change of the embedded CAT is lesser than it of free CAT as incubated in denaturing condition. Therefore, the result of this work indicated that the biological activity of embedded enzyme is still maintained under the harsh environment.
Finally, this work agreed with our hypothesis that not only biocomposites can shield embedded enzyme against structural unfolding, but also explore the mechanism of enzyme inactivation by the use of nanoporous MOFs as well as create a novel model for probing physiological mechanism of biomolecules.
關鍵字(中) ★ 金屬有機骨架材料
★ 酵素
★ 蛋白質結構
★ 摺疊效應
★ 原位創新合成法
關鍵字(英) ★ Metal-Organic Frameworks
★ Enzyme
★ de novo Approach
論文目次 中文摘要 I
Abstract III
致謝辭 V
目錄 VI
圖目錄 IX
表目錄 XI
第一章 緒論 1
1-1 固定化酵素 (Immobilized Enzyme) 1
1-2 金屬有機骨架材料 4
1-2-1 發展 4
1-2-2 金屬有機骨架材料 6
1-2-3 類沸石咪唑骨架材料 9
1-2-4 類沸石咪唑骨架材料-90/-8 11
1-3 過氧化氫酶 (Catalase, CAT) 12
1-4 研究動機與目的 14
第二章 實驗 17
2-1 實驗藥品與設備 17
2-2 實驗儀器與方法 21
2-2-1 X 射線粉末繞射儀 (Powder X-ray Diffractometer, PXRD) 21
2-2-2 場發掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope, SEM) 23
2-2-3 等溫氮氣吸/脫附儀 (Accelerated Surface Area and Porosimetry system, ASPS) 24
2-2-4 熱重分析儀 (Thermogravimetric Analyzer, TGA) 26
2-2-5 紫外/可見光分光光譜儀 (UV/Vis Sepctrophotometer) 27
2-2-6 螢光光譜儀 (Fluorescence Spectrophotometer, FL) 27
2-2-7 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (SDS-PAGE) 30
2-2-8 偵測蛋白質的濃度 (Bradford Assay) 33
2-2-9 偵測過氧化氫水溶液之濃度 (Ferrous Oxidation in Xylenol orange assay, FOX assay) 34
2-2-10 偵測尿素分解酶之活性 (Acid-Base Indicator of Phenol Red Assay) 35
2-2-11 偵測類沸石咪唑骨架-90晶體顆粒中之尿素含量 36
2-3 類沸石咪唑骨架-90/-8包覆酵素酶材料 (Enzyme@ZIF) 的合成 36
2-3-1 類沸石咪唑骨架-90/-8包覆過氧化氫酶材料 (CAT@ZIF-90/-8) 的合成 36
2-3-2 類沸石咪唑骨架-90包覆尿素分解酶材料 (Urease@ZIF-90) 的合成 37
2-4 囊泡狀中孔洞矽材包覆過氧化氫酶 (CAT@MCF) 的合成 38
2-5 類沸石咪唑骨架-90 包覆酵素酶材料 (Enzyme@ZIF-90) 和囊泡狀中孔洞矽材包覆過氧化氫酶 (CAT@MCF) 中蛋白質的含量 39
2-6 過氧化氫酶 (CAT) 暨類沸石咪唑骨架-90 /囊泡狀中孔洞矽材包覆過氧化氫酶材料 (CAT@ZIF-90/MCF) 的活性測試 39
2-7 酵素動力學 (The kinetics of enzymes) 40
2-7-1 基本概念 40
2-7-2 Michaelis-Menten (M-M) 公式 41
第三章 結果與討論 46
3-1 類沸石咪唑骨架-90 包覆過氧化氫酶材料 (CAT@ZIF-90) 的鑑定 46
3-2 尿素分解酶確認尿素擴散的討論與結果 48
3-3 探討酵素金屬有機骨架複合材料蛋白質結構之摺疊效應 52
3-4 其他變性條件探討酵素金屬有機骨架複合材料蛋白質結構 58
第四章 結論與未來展望 61
參考文獻 62
第五章 附錄 73
參考文獻 1. Homaei, A. A.; Sariri, R.; Vianello, F.; Stevanato, R., Enzyme immobilization: an update. Journal of Chemical Biology 2013, 6 (4), 185-205.
2. Gomes-Ruffi, C. R.; Cunha, R. H. d.; Almeida, E. L.; Chang, Y. K.; Steel, C. J., Effect of the emulsifier sodium stearoyl lactylate and of the enzyme maltogenic amylase on the quality of pan bread during storage. LWT - Food Science and Technology 2012, 49 (1), 96-101.
3. Hakala, T. K.; Liitiä, T.; Suurnäkki, A., Enzyme-aided alkaline extraction of oligosaccharides and polymeric xylan from hardwood kraft pulp. Carbohydrate Polymers 2013, 93 (1), 102-108.
4. Subba Rao, C.; Sathish, T.; Ravichandra, P.; Prakasham, R. S., Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochemistry 2009, 44 (3), 262-268.
5. Tong, Z.; Qingxiang, Z.; Hui, H.; Qin, Q.; Yi, Y., Removal of toxic phenol and 4-chlorophenol from waste water by horseradish peroxidase. Chemosphere 1997, 34 (4), 893-903.
6. Luo, K.; Yang, Q.; Yu, J.; Li, X.-m.; Yang, G.-j.; Xie, B.-x.; Yang, F.; Zheng, W.; Zeng, G.-m., Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification. Bioresource Technology 2011, 102 (14), 7103-7110.
7. Tonini, D.; Astrup, T., Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste. Waste Manag 2012, 32 (1), 165-176.
8. Sassolas, A.; Blum, L. J.; Leca-Bouvier, B. D., Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances 2012, 30 (3), 489-511.
9. Vrábel, P.; Polakovič, M.; Štefuca, V.; Báleš, V., Analysis of mechanism and kinetics of thermal inactivation of enzymes: Evaluation of multitemperature data applied to inactivation of yeast invertase. Enzyme and Microbial Technology 1997, 20 (5), 348-354.
10. Brodelius, P., Industrial applications of immobilized biocatalysts. In Advances in Biochemical Engineering, Volume 10, Springer Berlin Heidelberg: Berlin, Heidelberg, 1978; pp 75-129.
11. Datta, S.; Christena, L. R.; Rajaram, Y. R. S., Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 2013, 3 (1), 1-9.
12. Nelson, J. M.; Griffin, E. G., ADSORPTION OF INVERTASE. Journal of the American Chemical Society 1916, 38 (5), 1109-1115.
13. http://juang.bst.ntu.edu.tw/BCbasics/index.htm.
14. Chen, Y.; Lykourinou, V.; Hoang, T.; Ming, L.-J.; Ma, S., Size-Selective Biocatalysis of Myoglobin Immobilized into a Mesoporous Metal–Organic Framework with Hierarchical Pore Sizes. Inorganic Chemistry 2012, 51 (17), 9156-9158.
15. Wong, L. S.; Thirlway, J.; Micklefield, J., Direct Site-Selective Covalent Protein Immobilization Catalyzed by a Phosphopantetheinyl Transferase. Journal of the American Chemical Society 2008, 130 (37), 12456-12464.
16. Bernfeld, P.; Wan, J., Antigens and Enzymes Made Insoluble by Entrapping Them into Lattices of Synthetic Polymers. Science 1963, 142 (3593), 678-679.
17. Shen, Q.; Yang, R.; Hua, X.; Ye, F.; Zhang, W.; Zhao, W., Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochemistry 2011, 46 (8), 1565-1571.
18. Wen, H.; Nallathambi, V.; Chakraborty, D.; Calabrese Barton, S., Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase. Microchimica Acta 2011, 175 (3-4), 283-289.
19. Wang, Z.-G.; Wan, L.-S.; Liu, Z.-M.; Huang, X.-J.; Xu, Z.-K., Enzyme immobilization on electrospun polymer nanofibers: An overview. Journal of Molecular Catalysis B: Enzymatic 2009, 56 (4), 189-195.
20. Kim, J.; Jia, H.; Wang, P., Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnology Advances 2006, 24 (3), 296-308.
21. Tomic, E. A., Thermal stability of coordination polymers. Journal of Applied Polymer Science 1965, 9 (11), 3745-3752.
22. Hoskins, B. F.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American Chemical Society 1990, 112 (4), 1546-1554.
23. Gliemann, H.; Wöll, C., Epitaxially grown metal-organic frameworks. Materials Today 2012, 15 (3), 110-116.
24. Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378, 703-706.
25. Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276-279.
26. The Cambridge Crystallographic Data Centre. See The Cambridge Crystallographic Data Centre at http://www.ccdc.cam.ac.uk/.
27. Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-Jimenez, D., Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future. Chemistry of Materials 2017, 29 (7), 2618-2625.
28. Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Ohrstrom, L.; O′Keeffe, M.; Suh, M. P.; Reedijk, J., Coordination polymers, metal-organic frameworks and the need for terminology guidelines. CrystEngComm 2012, 14 (9), 3001-3004.
29. Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydın, A. Ö.; Hupp, J. T., Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? Journal of the American Chemical Society 2012, 134 (36), 15016-15021.
30. Ferey, G., Hybrid porous solids: past, present, future. Chemical Society Reviews 2008, 37 (1), 191-214.
31. Horike, S.; Shimomura, S.; Kitagawa, S., Soft porous crystals. Nature Chemistry 2009, 1, 695.
32. Zhou, H.-C.; Long, J. R.; Yaghi, O. M., Introduction to Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 673-674.
33. Everett, D. H., Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure and Applied Chemistry 1972, 31 (4), 577-638.
34. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149).
35. Gomez-Gualdron, D. A.; Colon, Y. J.; Zhang, X.; Wang, T. C.; Chen, Y.-S.; Hupp, J. T.; Yildirim, T.; Farha, O. K.; Zhang, J.; Snurr, R. Q., Evaluating topologically diverse metal-organic frameworks for cryo-adsorbed hydrogen storage. Energy & Environmental Science 2016, 9 (10), 3279-3289.
36. Mason, J. A.; Oktawiec, J.; Taylor, M. K.; Hudson, M. R.; Rodriguez, J.; Bachman, J. E.; Gonzalez, M. I.; Cervellino, A.; Guagliardi, A.; Brown, C. M.; Llewellyn, P. L.; Masciocchi, N.; Long, J. R., Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 2015, 527, 357-361.
37. Holcroft, J. M.; Hartlieb, K. J.; Moghadam, P. Z.; Bell, J. G.; Barin, G.; Ferris, D. P.; Bloch, E. D.; Algaradah, M. M.; Nassar, M. S.; Botros, Y. Y.; Thomas, K. M.; Long, J. R.; Snurr, R. Q.; Stoddart, J. F., Carbohydrate-Mediated Purification of Petrochemicals. Journal of the American Chemical Society 2015, 137 (17), 5706-5719.
38. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C., Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews 2009, 38 (5), 1477-1504.
39. DeCoste, J. B.; Peterson, G. W., Metal–Organic Frameworks for Air Purification of Toxic Chemicals. Chemical Reviews 2014, 114 (11), 5695-5727.
40. Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y., Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews 2014, 43 (16), 6011-6061.
41. Corma, A.; García, H.; Llabrés i Xamena, F. X., Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews 2010, 110 (8), 4606-4655.
42. Faust, T., MOFs deliver. Nature Chemistry 2015, 7, 270.
43. Bernini, M. C.; Fairen-Jimenez, D.; Pasinetti, M.; Ramirez-Pastor, A. J.; Snurr, R. Q., Screening of bio-compatible metal-organic frameworks as potential drug carriers using Monte Carlo simulations. Journal of Materials Chemistry B 2014, 2 (7), 766-774.
44. Orellana-Tavra, C.; Baxter, E. F.; Tian, T.; Bennett, T. D.; Slater, N. K. H.; Cheetham, A. K.; Fairen-Jimenez, D., Amorphous metal-organic frameworks for drug delivery. Chemical Communications 2015, 51 (73), 13878-13881.
45. Yen, C.-I.; Liu, S.-M.; Lo, W.-S.; Wu, J.-W.; Liu, Y.-H.; Chein, R.-J.; Yang, R.; Wu, K. C. W.; Hwu, J. R.; Ma, N.; Shieh, F.-K., Cytotoxicity of Postmodified Zeolitic Imidazolate Framework-90 (ZIF-90) Nanocrystals: Correlation between Functionality and Toxicity. Chemistry – A European Journal 2016, 22 (9), 2925-2929.
46. Langmi, H. W.; Ren, J.; Musyoka, N. M., Metal-Organic Frameworks as Materials for Fuel Cell Technologies. In Nanomaterials for Fuel Cell Catalysis, Ozoemena, K. I.; Chen, S., Eds. Springer International Publishing: Cham, 2016; pp 367-407.
47. Shekhah, O.; Liu, J.; Fischer, R. A.; Woll, C., MOF thin films: existing and future applications. Chemical Society Reviews 2011, 40 (2), 1081-1106.
48. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125.
49. Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.-J.; Shao-Horn, Y.; Dincă, M., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials 2016, 16, 220-224.
50. Miller, S. E.; Teplensky, M. H.; Moghadam, P. Z.; Fairen-Jimenez, D., Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus 2016, 6 (4).
51. McDonald, T. M.; Mason, J. A.; Kong, X.; Bloch, E. D.; Gygi, D.; Dani, A.; Crocellà, V.; Giordanino, F.; Odoh, S. O.; Drisdell, W. S.; Vlaisavljevich, B.; Dzubak, A. L.; Poloni, R.; Schnell, S. K.; Planas, N.; Lee, K.; Pascal, T.; Wan, L. F.; Prendergast, D.; Neaton, J. B.; Smit, B.; Kortright, J. B.; Gagliardi, L.; Bordiga, S.; Reimer, J. A.; Long, J. R., Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 2015, 519, 303-308.
52. Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R., Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 724-781.
53. Yazaydın, A. Ö.; Snurr, R. Q.; Park, T.-H.; Koh, K.; Liu, J.; LeVan, M. D.; Benin, A. I.; Jakubczak, P.; Lanuza, M.; Galloway, D. B.; Low, J. J.; Willis, R. R., Screening of Metal−Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach. Journal of the American Chemical Society 2009, 131 (51), 18198-18199.
54. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.
55. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M., Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64 (36), 8553-8557.
56. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
57. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal-Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
58. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
59. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 2006, 8 (3), 211-214.
60. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, (31), 3642-3644.
61. Bennett, T. D.; Cheetham, A. K.; Fuchs, A. H.; Coudert, F.-X., Interplay between defects, disorder and flexibility in metal-organic frameworks. Nature Chemistry 2016, 9, 11-16.
62. Sholl, D. S.; Lively, R. P., Defects in Metal–Organic Frameworks: Challenge or Opportunity? The Journal of Physical Chemistry Letters 2015, 6 (17), 3437-3444.
63. Hajek, J.; Bueken, B.; Waroquier, M.; De Vos, D.; Van Speybroeck, V., The Remarkable Amphoteric Nature of Defective UiO‐66 in Catalytic Reactions. Chemcatchem 2017, 9 (12), 2203-2210.
64. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319 (5865), 939-943.
65. Walton, K. S., Movies of a growth mechanism. Nature 2015, 523, 535.
66. Tan, K.; Zuluaga, S.; Gong, Q.; Canepa, P.; Wang, H.; Li, J.; Chabal, Y. J.; Thonhauser, T., Water Reaction Mechanism in Metal Organic Frameworks with Coordinatively Unsaturated Metal Ions: MOF-74. Chemistry of Materials 2014, 26 (23), 6886-6895.
67. Cubillas, P.; Anderson, M. W.; Attfield, M. P., Crystal Growth Mechanisms and Morphological Control of the Prototypical Metal–Organic Framework MOF-5 Revealed by Atomic Force Microscopy. Chemistry – A European Journal 2012, 18 (48), 15406-15415.
68. Ahmad, N.; Hassan, H.; Chughtai, A.; Verpoort, F., ChemInform Abstract: Metal—Organic Molecular Cages: Applications of Biochemical Implications. 2015; Vol. 46.
69. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research 2010, 43 (1), 58-67.
70. Masciocchi, N.; Bruni, S.; Cariati, E.; Cariati, F.; Galli, S.; Sironi, A., Extended Polymorphism in Copper(II) Imidazolate Polymers:  A Spectroscopic and XRPD Structural Study. Inorganic Chemistry 2001, 40 (23), 5897-5905.
71. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (27), 10186-10191.
72. Pérez-Pellitero, J.; Amrouche, H.; Siperstein, F. R.; Pirngruber, G.; Nieto-Draghi, C.; Chaplais, G.; Simon-Masseron, A.; Bazer-Bachi, D.; Peralta, D.; Bats, N., Adsorption of CO2, CH4, and N2 on Zeolitic Imidazolate Frameworks: Experiments and Simulations. Chemistry – A European Journal 2010, 16 (5), 1560-1571.
73. Pan, Y.; Lai, Z., Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chemical Communications 2011, 47 (37), 10275-10277.
74. Song, Q.; Nataraj, S. K.; Roussenova, M. V.; Tan, J. C.; Hughes, D. J.; Li, W.; Bourgoin, P.; Alam, M. A.; Cheetham, A. K.; Al-Muhtaseb, S. A.; Sivaniah, E., Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy & Environmental Science 2012, 5 (8), 8359-8369.
75. Wu, H.; Zhou, W.; Yildirim, T., Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework-8. Journal of the American Chemical Society 2007, 129 (17), 5314-5315.
76. Han, S. S.; Choi, S.-H.; Goddard, W. A., Improved H2 Storage in Zeolitic Imidazolate Frameworks Using Li+, Na+, and K+ Dopants, with an Emphasis on Delivery H2 Uptake. The Journal of Physical Chemistry C 2011, 115 (8), 3507-3512.
77. Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C.-K., Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. Journal of the American Chemical Society 2012, 134 (35), 14345-14348.
78. Wee, L. H.; Lescouet, T.; Ethiraj, J.; Bonino, F.; Vidruk, R.; Garrier, E.; Packet, D.; Bordiga, S.; Farrusseng, D.; Herskowitz, M.; Martens, J. A., Hierarchical Zeolitic Imidazolate Framework-8 Catalyst for Monoglyceride Synthesis. ChemCatChem 2013, 5 (12), 3562-3566.
79. Chen, E.-X.; Yang, H.; Zhang, J., Zeolitic Imidazolate Framework as Formaldehyde Gas Sensor. Inorganic Chemistry 2014, 53 (11), 5411-5413.
80. Zhuang, J.; Kuo, C.-H.; Chou, L.-Y.; Liu, D.-Y.; Weerapana, E.; Tsung, C.-K., Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano 2014, 8 (3), 2812-2819.
81. Vasconcelos, I. B.; Silva, T. G. d.; Militao, G. C. G.; Soares, T. A.; Rodrigues, N. M.; Rodrigues, M. O.; Costa, N. B. d.; Freire, R. O.; Junior, S. A., Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Advances 2012, 2 (25), 9437-9442.
82. Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M., Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie International Edition 2006, 45 (10), 1557-1559.
83. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
84. Bae, T.-H.; Lee, J. S.; Qiu, W.; Koros, W. J.; Jones, C. W.; Nair, S., A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal–Organic Framework Crystals. Angewandte Chemie International Edition 2010, 49 (51), 9863-9866.
85. Huang, A.; Dou, W.; Caro, J., Steam-Stable Zeolitic Imidazolate Framework ZIF-90 Membrane with Hydrogen Selectivity through Covalent Functionalization. Journal of the American Chemical Society 2010, 132 (44), 15562-15564.
86. Huang, A.; Wang, N.; Kong, C.; Caro, J., Organosilica-Functionalized Zeolitic Imidazolate Framework ZIF-90 Membrane with High Gas-Separation Performance. Angewandte Chemie International Edition 2012, 51 (42), 10551-10555.
87. Zhang, F.-M.; Dong, H.; Zhang, X.; Sun, X.-J.; Liu, M.; Yang, D.-D.; Liu, X.; Wei, J.-Z., Postsynthetic Modification of ZIF-90 for Potential Targeted Codelivery of Two Anticancer Drugs. ACS Applied Materials & Interfaces 2017, 9 (32), 27332-27337.
88. Jones, C. G.; Stavila, V.; Conroy, M. A.; Feng, P.; Slaughter, B. V.; Ashley, C. E.; Allendorf, M. D., Versatile Synthesis and Fluorescent Labeling of ZIF-90 Nanoparticles for Biomedical Applications. ACS Applied Materials & Interfaces 2016, 8 (12), 7623-7630.
89. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; Keeffe, M.; Yaghi, O. M., Hydrogen Storage in Microporous Metal-Organic Frameworks. Science 2003, 300 (5622), 1127.
90. Huang, A.; Liu, Q.; Wang, N.; Caro, J., Organosilica functionalized zeolitic imidazolate framework ZIF-90 membrane for CO2/CH4 separation. Microporous and Mesoporous Materials 2014, 192 (Supplement C), 18-22.
91. Halliwell, B.; Gutteridge, J. M. C., The definition and measurement of antioxidants in biological systems. Free Radical Biology and Medicine 1995, 18 (1), 125-126.
92. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J., Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology 2007, 39 (1), 44-84.
93. Blokhina, O.; Virolainen, E.; Fagerstedt, K. V., Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review. Annals of Botany 2003, 91 (2), 179-194.
94. MatÉs, J. M.; Pérez-Gómez, C.; De Castro, I. N., Antioxidant enzymes and human diseases. Clinical Biochemistry 1999, 32 (8), 595-603.
95. Deisseroth, A.; Dounce, A. L., Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiological Reviews 1970, 50 (3), 319-375.
96. Fita, I.; Rossmann, M. G., The NADPH binding site on beef liver catalase. Proceedings of the National Academy of Sciences of the United States of America 1985, 82 (6), 1604-1608.
97. Chance, B., EFFECT OF pH UPON THE REACTION KINETICS OF THE ENZYME-SUBSTRATE COMPOUNDS OF CATALASE. Journal of Biological Chemistry 1952, 194 (2), 471-481.
98. Mateo, C.; Palomo, J. M.; Fernandez-Lorente, G.; Guisan, J. M.; Fernandez-Lafuente, R., Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology 2007, 40 (6), 1451-1463.
99. Betancor, L.; Luckarift, H. R., Bioinspired enzyme encapsulation for biocatalysis. Trends in Biotechnology 2008, 26 (10), 566-572.
100. Wang, Y.; Caruso, F., Mesoporous Silica Spheres as Supports for Enzyme Immobilization and Encapsulation. Chemistry of Materials 2005, 17 (5), 953-961.
101. Pierre, S. J.; Thies, J. C.; Dureault, A.; Cameron, N. R.; van Hest, J. C. M.; Carette, N.; Michon, T.; Weberskirch, R., Covalent Enzyme Immobilization onto Photopolymerized Highly Porous Monoliths. Advanced Materials 2006, 18 (14), 1822-1826.
102. Luckarift, H. R.; Spain, J. C.; Naik, R. R.; Stone, M. O., Enzyme immobilization in a biomimetic silica support. Nature Biotechnology 2004, 22, 211-213.
103. Tran, D. N.; Balkus, K. J., Perspective of Recent Progress in Immobilization of Enzymes. ACS Catalysis 2011, 1 (8), 956-968.
104. Besteman, K.; Lee, J.-O.; Wiertz, F. G. M.; Heering, H. A.; Dekker, C., Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors. Nano Letters 2003, 3 (6), 727-730.
105. Phadtare, S.; Kumar, A.; Vinod, V. P.; Dash, C.; Palaskar, D. V.; Rao, M.; Shukla, P. G.; Sivaram, S.; Sastry, M., Direct Assembly of Gold Nanoparticle “Shells” on Polyurethane Microsphere “Cores” and Their Application as Enzyme Immobilization Templates. Chemistry of Materials 2003, 15 (10), 1944-1949.
106. Lee, K. Y.; Yuk, S. H., Polymeric protein delivery systems. Progress in Polymer Science 2007, 32 (7), 669-697.
107. Hartmann, M.; Kostrov, X., Immobilization of enzymes on porous silicas - benefits and challenges. Chemical Society Reviews 2013, 42 (15), 6277-6289.
108. Küchler, A.; Yoshimoto, M.; Luginbühl, S.; Mavelli, F.; Walde, P., Enzymatic reactions in confined environments. Nature Nanotechnology 2016, 11, 409-420.
109. Li, P.; Modica, J. A.; Howarth, A. J.; Vargas L, E.; Moghadam, P. Z.; Snurr, R. Q.; Mrksich, M.; Hupp, J. T.; Farha, O. K., Toward Design Rules for Enzyme Immobilization in Hierarchical Mesoporous Metal-Organic Frameworks. Chem 2016, 1 (1), 154-169.
110. Lian, X.; Chen, Y.-P.; Liu, T.-F.; Zhou, H.-C., Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc01438k Click here for additional data file. Chemical Science 2016, 7 (12), 6969-6973.
111. Lykourinou, V.; Chen, Y.; Wang, X.-S.; Meng, L.; Hoang, T.; Ming, L.-J.; Musselman, R. L.; Ma, S., Immobilization of MP-11 into a Mesoporous Metal–Organic Framework, MP-11@mesoMOF: A New Platform for Enzymatic Catalysis. Journal of the American Chemical Society 2011, 133 (27), 10382-10385.
112. Chen, Y.; Lykourinou, V.; Vetromile, C.; Hoang, T.; Ming, L.-J.; Larsen, R. W.; Ma, S., How Can Proteins Enter the Interior of a MOF? Investigation of Cytochrome c Translocation into a MOF Consisting of Mesoporous Cages with Microporous Windows. Journal of the American Chemical Society 2012, 134 (32), 13188-13191.
113. Feng, D.; Liu, T.-F.; Su, J.; Bosch, M.; Wei, Z.; Wan, W.; Yuan, D.; Chen, Y.-P.; Wang, X.; Wang, K.; Lian, X.; Gu, Z.-Y.; Park, J.; Zou, X.; Zhou, H.-C., Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nature Communications 2015, 6, 5979.
114. Li, P.; Moon, S.-Y.; Guelta, M. A.; Harvey, S. P.; Hupp, J. T.; Farha, O. K., Encapsulation of a Nerve Agent Detoxifying Enzyme by a Mesoporous Zirconium Metal–Organic Framework Engenders Thermal and Long-Term Stability. Journal of the American Chemical Society 2016, 138 (26), 8052-8055.
115. Shieh, F.-K.; Wang, S.-C.; Leo, S.-Y.; Wu, K. C. W., Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size. Chemistry – A European Journal 2013, 19 (34), 11139-11142.
116. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K., Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society 2015, 137 (13), 4276-4279.
117. Miller Indices. See Miller Indices at http://universe-review.ca/F13-atom04.htm.
118. X-ray source See X-ray source at https://doitpoms.ac.uk/tlplib/xray-diffraction/printall.php
119. X-xay Diffraction. See X-xay Diffraction at http://www.d2phaser.com/en/#126-dataquality.
120. Bragg′s law. See Bragg′s law at http://ptr.chaoxing.com/nodedetailcontroller/visitnodedetail?knowledgeId=3511465.
121. High-Resolution Scanning Electron Microscopy.
122. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry 1985, 57 (4), 603-619.
123. 熱重分析儀TA Instruments Q50 Series示意圖. http://slideplayer.com/slide/5690183/.
124. Nalwa, H. S., Handbook of Luminescence, Display Materials and Device. American Scientific Publishers, USA: 2003; Vol. 3.
125. Shionoya, S.; Yen, W. M., Phosphor Handbook. CRC Press: Boca Raton, FL, USA, 1998.
126. Hitachi F-7000螢光光譜儀構造圖. https://www.hitachi-hightech.com/.
127. 激發(Excitement)與放射(Emission)之概念. www.chem.ntou.edu.tw/bin/downloadfile.php.
128. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976, 72 (1), 248-254.
129. Jiang, Z.-Y.; Woollard, A. C. S.; Wolff, S. P., Hydrogen peroxide production during experimental protein glycation. FEBS Letters 1990, 268 (1), 69-71.
130. Ou, P.; Wolff, S. P., A discontinuous method for catalase determination at ‘near physiological’ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. Journal of Biochemical and Biophysical Methods 1996, 31 (1), 59-67.
131. Han, Y.; Lee, S. S.; Ying, J. Y., Spherical Siliceous Mesocellular Foam Particles for High-Speed Size Exclusion Chromatography. Chemistry of Materials 2007, 19 (9), 2292-2298.
132. Li, P.; Moon, S.-Y.; Guelta, M. A.; Lin, L.; Gómez-Gualdrón, D. A.; Snurr, R. Q.; Harvey, S. P.; Hupp, J. T.; Farha, O. K., Nanosizing a Metal–Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis. ACS Nano 2016, 10 (10), 9174-9182.
133. Monera, O. D.; Kay, C. M.; Hodges, R. S., Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Science 1994, 3 (11), 1984-1991.
134. Štefanac, Z.; Tomašković, M.; Raković-tresić, Z., Spectrophotometric Method of Assaying Urease Activity. Analytical Letters 1969, 2 (4), 197-210.
135. Margoliash, E.; Novogrodsky, A.; Schejter, A., Irreversible reaction of 3-amino-1:2:4-triazole and related inhibitors with the protein of catalase. Biochemical Journal 1960, 74 (2), 339-348.
136. Ueda, M.; Kinoshita, H.; Yoshida, T.; Kamasawa, N.; Osumi, M.; Tanaka, A., Effect of catalase-specific inhibitor 3-amino-1,2,4-triazole on yeast peroxisomal catalase in vivo. FEMS Microbiology Letters 2003, 219 (1), 93-98.
137. Goyal, M. M.; Basak, A., Human catalase: looking for complete identity. Protein & Cell 2010, 1 (10), 888-897.
138. Mylonas, E.; Svergun, D. I., Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering. Journal of Applied Crystallography 2007, 40 (s1), s245-s249.
139. Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J.; Falcaro, P., Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications 2015, 6, 7240.
140. Ryu, K.; Dordick, J. S., How do organic solvents affect peroxidase structure and function? Biochemistry 1992, 31 (9), 2588-2598.
141. Liao, F.-S.; Lo, W.-S.; Hsu, Y.-S.; Wu, C.-C.; Wang, S.-C.; Shieh, F.-K.; Morabito, J. V.; Chou, L.-Y.; Wu, K. C. W.; Tsung, C.-K., Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a de Novo Approach. Journal of the American Chemical Society 2017, 139 (19), 6530-6533.

指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2018-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明