博碩士論文 104223604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.238.184.78
姓名 費達思(Firdausy Amalina Esya)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Soluble 3,3’-bis(tetradecylthio)-2,2’-bithiophene (SBT) Derived Small Molecules for Organic Thin Film Transistor (OTFT) Application)
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘 要

近年來噻吩衍生物在有機薄電晶體方面受到越來越多的關注,分子如果要有良好的電性表向,本身須具備良好的-作用力和有效共軛長度,因此本研究將SBT分別結合BT和TVT合成出DTVT-SBT及DbT-SBT,兩者電性皆有0.1 cm2/Vs,且有良好的穩定性,適合用在p-type 的OTFT材料。
摘要(英) Organic Thin Film Transistors (OTFT) based on thiophene derivative organic semiconductors, has been receiving increasing attention over the last few years. Many researches develop the most important properties which is - molecular conjugation that can achieve a high performance in organic semiconductors. The novel and promising organic semiconductor has been synthesized based on conjugated 3,3’-bis(tetradecylthio)-2,2’-bithiophene (SBT) with addition bithiophene (BT) and thienovinylthiophene (TVT) as thiophene ring to enhance the - molecular conjugation. The chemical and physical properties which were characterizing their optical, electrochemical, and thermal properties show that DTVT-SBT has a higher performance than DbT-SBT. Both of the compounds are predicted can achieve high mobility at least 0.1 cm2/Vs and good stability for p-type semiconductor in OTFT application.

Key words : organic thin film transistor,3 ,3’-bis(tetradecylthio)-2,2’-bithiophene (SBT), bithiophene (BT), thienovinylthiophene (TVT), p-type semiconductor
關鍵字(中) ★ organic thin film transistor
★ 3,3’-bis(tetradecylthio)-2,2’-bithiophene (SBT)
★ bithiophene (BT)
★ thienovinylthiophene (TVT)
★ p-type semiconductor
關鍵字(英) ★ organic thin film transistor
★ 3,3’-bis(tetradecylthio)-2,2’-bithiophene (SBT)
★ bithiophene (BT)
★ thienovinylthiophene (TVT)
★ p-type semiconductor
論文目次 TABLE OF CONTENTS

ABSTRACT i
摘 要 ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES ix
CHAPTER 1 INTRODUCTION 1
1.1. Background 1
1.2. Purpose 5
CHAPTER 2 OVERVIEW 6
2.1. Introduction of Organic Semiconductor (OSC) 6
2.2. Properties of Organic Semiconductor (OSC) 7
2.3. Basic Working Principles of Organic Semiconductor 8
2.3. Organic Semiconductor Based On Thiophene Derivatives 12
2.4. Organic Thin Film Transistor (OTFT) 14
CHAPTER 3 EXPERIMENTAL SECTION 26
3.1. Materials and Methods 26
3.1.1. Materials 26
3.1.2. Methods 27
3.1.2.1. Nuclear Magnetic Resonance (NMR) 27
3.1.2.2. Ultraviolet Visible Spectrometer (UV-vis) 27
3.1.2.3. Differential Scanning Calorimeter (DSC) 28
3.1.2.4. Thermo Gravimetric Analysis (TGA) 28
3.1.2.5. Electrochemical Analyzer – Differential Pulse Parameter (DPV) 28
3.2. Synthesis 29
3.2.1. Synthetic Scheme Route 29
3.2.1.1. DbT-SBT 30
3.2.1.2. DTVT-SBT 31
3.2.2. Synthetic of 2,5-bis(bithiophene-2-yl)-3,3’-bis(tetradecylthio)- 2,2’-bithiophene or DbT-SBT 31
3.2.2.1. 2,2’-bithiophene (1.03) 31
3.2.2.2. 3,3’,5,5’-tetrabromo-2,2’-bithiophene (1.04) 32
3.2.2.3. 3,3’-dibromo-2,2’-bithiophene (1.05) 32
3.2.2.4. tetradecylthiol (1.06) 33
3.2.2.5. 3,3’-bis(tetradecylthio)-2,2’-bithiophene (1.07) 33
3.2.2.6. 4,4’-dibromo-3,3’-bis(tetradecylthio)-2,2’-bithiophene (1.08) 34
3.2.2.7. 5-tributhylstannyl)-2,2’-bithiophene (1.09) 34
3.2.2.8. 2,5-bis(bithiophene-2-yl)-3,3’-bis(tetradecylthio)- 2,2’-bithiophene (DbT-SBT) (1.10) 34
3.2.3. Synthetic of 2,5-bis(bithienovinylthiophene-2-yl)-3,3’-bis(tetradecylthio)- 2,2’-bithiophene or DTVT-SBT 35
3.2.3.1. 5-tributhylstannyl-2,2’-thienovinylthiophene (2.02) 35
3.2.3.2. 2,5-bis(bithienovinylthiophene-2-yl)-3,3’-bis(tetradecylthio)-2,2’-bithiophene (DTVT-SBT) (2.03) 35
CHAPTER 4 RESULT AND DISCUSSION 36
4.1. Synthesis 36
4.1.1. DbT-SBT 36
4.1.2. DTVT-SBT 36
4.2. Molecular Characterization 37
4.2.1. Optical Properties 37
4.2.2. Electrochemical Properties 40
4.2.3. Thermal Properties 42
4.3. Organic Thin Film Transistor Fabrication and Characterization 44
CHAPTER 5 CONCLUSIONS 46
REFFERENCES 47
CHAPTER 6 APPENDIX 50
6.1. NMR of Synthetic DbT-SBT 50
6.2. NMR of Synthetic DTVT-SBT 55 
LIST OF FIGURES

Figure 1.1. Cost versus performance of organic and inorganic semiconductors. 2
Figure 1. 2. Chemical structure of alkyl-substituted oligothiophenes 3
Figure 1.3. Chemical structures of an oligothiophene with internal double bonds and asymmetric oligothiophene derivatives. 4
Figure 2.1. Schematic representation of a polymer chain showing examples of unsaturated () and solubilizing (sub) units 7
Figure 2.2. Scheme of the energetic levels of two isolated atom, a biatomic molecule and a solid 9
Figure 2.3. Schematic of the solution-shearing method with relevant processing parameters and information on heat supply, substrate, and shearing tool modification 11
Figure 2.4. Chemical structure of some of the well-studied p-type polymers and small molecules organic semiconductor 13
Figure 2.5. Schematic of the device configuration of OTFT 15
Figure 2.6. Top gate OTFTs : (a) TGTC and (b) TGBC structures. 16
Figure 2.7. (a) Output and (b) transfer (at Vds = - 1.5 V) characteristics of OTFTs in the TGTC ad TGBC configurations. 17
Figure 2.8. (a) Schematic structure of a field – effect transistor and applied voltages : L = channel length ; W = channel width ; Vd = drain voltage ; VTh = Threshold voltage ; Id = drain current ; (b-d) Illustrations of operating regimes of field – effect transistors : (b) linear regime ; (c) start of saturation regime at pinch – off ; (d) saturation regime and corresponding current – voltage characteristics. 19
Figure 4.1. Optical Spectra of DbT-SBT 37
Figure 4.2. Optical Spectra of DTVT-SBT 38
Figure 4.3. The comparison of optical spectra between DBT-SBT, DTVT-SBT, and DDTT-SBT 38
Figure 4.4. Example illustration a comparison of -* energy gap in a series of polyenes of increasing chain length 39
Figure 4.5. The comparison of electrochemically derived HOMO and LUMO energy level between DTVT-SBT and DbT-SBT using DPV 40
Figure 4.6. Illustration of diagram energy level from several type of alkene group 42
Figure 4.7. TGA weight loss vs temperature between DbT-SBT and DTVT-SBT 43
Figure 4.8. Bis(bithienylthiophene and alkynylthiophene oligomers 45
Figure 6.1. 2,2’-bithiophene 50
Figure 6.2. 3,3’,5,5’-tetrabromo-2,2’-bithiophene 51
Figure 6.3. 3,3’-dibromo-2,2’-bithiophene 51
Figure 6.4. Tetradecylthiol 52
Figure 6.5. 3,3’-bis(tetradecylthio)-2,2’-bithiophene 52
Figure 6.6. 4,4’-dibromo-3,3’-bis(tetradecylthio)-2,2’-bithiophene 53
Figure 6.7. 2,5-bis(bithiophene-2-yl)-3,3’-bis(tetradecylthio)- 2,2’-bithiophene (DbT-SBT) 54
Figure 6.8. 2,5-bis(bithienovinylthiophene-2-yl)-3,3’-bis(tetradecylthio)-2,2’-bithiophene (DTVT-SBT) 55









LIST OF TABLES

Table 3.1. Material Description of CAS NO 26
Tabel 4.1. Optical and electrochemical comparison of DTVT-SBT and DbT-SBT compounds
41
Table 4.2. The comparison of thermal properties of DbT-SBT and DTVT-SBT 44
參考文獻 Afzali, A. B. 2002. An Efficient Synthesis of Symmetrical Oligothiophenes : Synthesis and Transport Properties of A Soluble Sexithiophene Derivative. Chemistry Material , 1742-1746.
Bao, Z. A. 2007. Organic Field-Effect Transistors. London: CRC Press Taylor and Francis Group.
Brusso, J. L. 2008. Two-Dimensional Structural Motif in Thienoacene Semiconductors: Synthesis, Structure, and Properties of Tetrathienoanthracene Isomers. Chemistry of Materials , 2484.
Cinar, M. E. 2015. Thienothiophenes, Dithienothiophenes, and Thienoacenes: Syntheses, Oligomers, Polymers, and Properties. Chemical Review , 3036-3140.
Dimitrakopoulos, C. E. 1997. Trans-trans-2,5-bis[2-[5-(2,2′-bithienyl)[ethenyl]thiophene : Synthesis, characterization, thin film deposition and fabrication of organic field-effect transistors. Syn. Met. , 193-197.
Doi, I. K. 2012. High mobility organic thin-film transistors on plastic substrate. Current Applied Physic , 32-35.
Dong, H. W. 2010. High performance organic semiconductors for field-effect transistors. Chemical Communications , 5211.
Facchetti, A. 2011. π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Application. Chemistry of Materials Review , 733-758.
Farchioni, R. A. 2001. Organic Electronic Materials : Conjugated Polymers and Low Molecular Weight Organic Solids. New York: Springer-Verlag Berlin Heidelberg.
Fu, Y. L. 2009. High field-effect mobility from poly (3-hexylthiophene) thin-film transistors by solvent–vapor-induced reflow. Organic Electronic , 883-888.
Garnier, F. E. 1998. Dihexylquaterthiophene, a two dimensional liquid crystal-like organic semiconductor with high transport properties. Chemistry Material , 3334-3339.
Gsänger, M. K. 2014. High-Performance Organic Thin-Film Transistors of J Stacked Squaraine Dyes. Journal of The American Chemical Society , 2351-2362.
Gupta, D. K. 2009. An analysis of the difference in behavior of top and bottom contact organic thin film transistors using device simulation. Organic Electronic , 775-784.
Halik, M. K. 2003. Relationship Between Molecular Structure and Electrical Performance of Oligothiophene Organic Thin Film Transistors. Advanced Materials , 917.
Hamadani, B. 2007. Electronic Charge Injection and Transport in Organic Field-Effect Transistors. Houston, Texas: Rice University.
Kano, M. M. 2011. Control of device parameters by active layer thickness in organic thin film transistors. Journal of Applied Physics , 073307-1–073307-3.
Klauk, H. U. 2007. Low voltage organic thin film transistors with large transconductance. Journal of Applied Physic , 074514-1–074514-7.
Kumar, B. B. 2014. Organic Thin Film Transistors : Structures, Models, Materials, Fabrication, and Applications: A Review. Polymer Reviews , 33-111.
Li, J. Q.-P. 2008. High-Performance Thin-Film Transistors from Solution-Processed Dithienothiophene Polymer Semiconductor Nanoparticles. Chemistry of Materials , 2057.
Liu, R. L. 2010. Low-operating-voltage polymer thin-film transistors based on poly (3-hexylthiophene) with hafnium oxide as the gate dielectric. IEEE Transactions on Device and Materials Reliability , 233-237.
Marinov, O. D. 2009. Organic thin film transistors: Part I. IEEE Trans. Electron Devices , 2952–2961.
McKinnon, M. 2014. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). London: University of Maryland.
Nelson, D. J. 2001. Correlation of Relative Rates of PdCl2 Oxidation of Functionalized Acyclic Alkenes versus Alkene Ionization Potentials, HOMOs, and LUMOs. Journal of American Chemical Society , 1564-1568.
Ortiz, R. P. 2010. High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chemical Review , 205-239.
Qiao, Y. W.-L. 2012. Synthesis, experimental and theoretical characterization, and field-effect transistor properties of a new class of dibenzothiophene derivatives: From linear to cyclic architectures. Journal of Materials Chemistry , 1313.
Shekar, B. C. 2004. Organic thin film transistors: Materials, processes, and devices. Korean Journal Chemistry of Engineering , 267-285.
Sichina, W. 2007. Characterization of Polymers Using TGA. New York: Perkin Elmer Instruments.
Someya, T. E 2002. Vapor sensing with alpha, omega-dihexylquarterthiophene field effect transistor substrates. Chemistry Material , 3079 - 3081.
Stella, M. 2009, December. Study of Organic Semiconductor for Device Application. Barcelona.
Zaumseil, J. A. 2007. Electron and Ambipolar Transport in Organic Field-Effect Transistors. Chemical Review , 1296-1323.
指導教授 陳銘洲(Ming-Chou Chen) 審核日期 2016-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明