博碩士論文 104225016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.238.94.194
姓名 李威(Wei Lee)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(Likelihood inference on bivariate competing risks models under the Pareto distribution)
相關論文
★ A control chart based on copula-based Markov time series models★ An improved nonparametric estimator of distribution function for bivariate competing risks model
★ Estimation and model selection for left-truncated and right-censored data: Application to power transformer lifetime modeling★ A robust change point estimator for binomial CUSUM control charts
★ Maximum likelihood estimation for double-truncation data under a special exponential family★ A class of generalized ridge estimator for high-dimensional linear regression
★ A copula-based parametric maximum likelihood estimation for dependently left-truncated data★ A class of Liu-type estimators based on ridge regression under multicollinearity with an application to mixture experiments
★ Dependence measures and competing risks models under the generalized Farlie-Gumbel-Morgenstern copula★ A review and comparison of continuity correction rules: the normal approximation to the binomial distribution
★ Parametric likelihood inference with censored survival data under the COM-Poisson cure models★ Likelihood-based analysis of doubly-truncated data under the location-scale and AFT models
★ Copula-based Markov chain model with binomial data★ The Weibull joint frailty-copula model for meta-analysis with semi-competing risks data
★ A general class of multivariate survival models derived from frailty and copula models: application to reliability theory★ Performance of a two-sample test with Mann-Whitney statistics under dependent censoring with copula models
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文研究在二元柏拉圖分配下競爭風險(competing risks)資料的概似推論。第一個模型是邊際分配為柏拉圖分配的富蘭克聯結函數(Frank copula),第二個模型是由Sankaran以及Nair(1993)提出的二元柏拉圖分配(SNBP)。我們會介紹上述分配的資料生成演算法,推導出score function以及Hessian matrix的形式,並使用牛頓-拉弗森演算法(Newton-Raphson algorithm)來找出概似函數的最大值。我們利用圖形比較和信息標準來發展適合度檢定,我們設計了模擬研究來檢視我們的最大概似估計量,並檢查所有方法的正確性,最後使用一組真實資料來做分析。
摘要(英) This thesis studies likelihood inference based on competing risks data under bivariate Pareto models. The first model is the Frank copula model with the Pareto marginal distributions. The second one is the Sankaran and Nair bivariate Pareto (SNBP) model, which is a bivariate Pareto distribution introduced by Sankaran and Nair (1993). We introduce data-generating algorithms from these distributions. We derive the forms of the score and Hessian matrix and develop a Newton-Raphson algorithm for maximizing the likelihood function. We develop goodness-of-fit methods by graphical plots and information criteria. We execute simulation study to examine the performance of the maximum likelihood estimators, checking the correctness of all our methods. Last we analyze a real dataset for illustration.
關鍵字(中) ★ 競爭風險
★ 富蘭克聯結函數
★ 二元柏拉圖分配
★ 肯德爾相關係數
★ 牛頓-拉弗森
關鍵字(英) ★ Competing risks
★ Frank copula
★ Bivariate Pareto distribution
★ Kendall′s tau
★ Newton-Raphson
論文目次 Chapter 1 Introduction………………………………………………………………1
Chapter 2 Bivariate Pareto model……………………………………3
2.1 Pareto distribution (one dimensional)…………………………3
2.2 Copula function……………………………………………………4
2.3 The bivariate Pareto model with the Frank copula…………5
2.4 The SNBP distribution and the LSBP distribution…………6
Chapter 3 Competing risks analysis under the Frank copula model………………………………………………………………………7
3.1 Maximum likelihood inference under common margins………7
3.2 Maximum likelihood inference under different margins…12
3.3 Simulation…………………………………………………………16
Chapter 4 Competing risks analysis under the SNBP model……18
4.1 Maximum likelihood inference…………………………………18
4.2 Simulation…………………………………………………………22
Chapter 5 Goodness-of-fit……………………………………………24
Chapter 6 Simulation…………………………………………………27
Chapter 7 Data analysis………………………………………………42
Chapter 8 Conclusion…………………………………………………49
Appendix 1………………………………………………………………51
Appendix 2………………………………………………………………57
Appendix 3………………………………………………………………64
References………………………………………………………………65
參考文獻
Arnold B.C. (2015) Pareto Distribution. Wiley StatsRef : Statistics Reference Online, DOI: 10.1002/9781118445112.
Andrews D.F., Herzberg A.M. (1985) Data: A collection of problems from many fields for the student and research worker. Springer, New York.
Emura T., Chen Y.H., Chen H.Y. (2012) Survival prediction based on compound covariate method under Cox proportional hazard models. PLoS ONE 7(10), DOI: 10.1371/journal.pone.0047627.
Emura T., Nakatochi M., Murotani K., Rondeau V. (2015) A joint frailty-copula model between tumour progression and death for meta-analysis. Statistical Methods in Medical Research, DOI: 10.1177/0962280215604510.
Emura T., Nakatochi M., Matsui S., Michimae H., Rondeau V. (2017) Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: meta-analysis with a joint model. Statistical Methods in Medical Research, DOI: 10.1177/0962280216688032.
Emura T., Chen Y.H. (2016) Gene selection for survival data under dependent censoring: A copula based approach. Statistical Methods in Medical Research, 25(6): 2840-2857.
Escarela G., Carriere J.F. (2003) Fitting competing risks with an assumed copula. Statistical Methods in Medical Research, 12(4): 333-349.
Efron B., Tibshirani R.J. (1993) An introduction to the Bootstrap. Boca Raton, New York.
Fan T.H., Chen C.H. (2017) A Bayesian predictive analysis of step‐Stress accelerated tests in Gamma degradation‐based processes. Quality and Reliability Engineering International, DOI: 10.1002/qre.2114.
Frank M.J. (1979) On the simultaneous associativity of and . Aequationes Matbematicae, 19: 194-226.
Genest C. (1987) Frank’s family of bivariate distributions. Biometrika, 74(3): 549-555.
Hu Y.H., Emura T. (2015) Maximum likelihood estimation for a special exponential family under random double-truncation. Computational Statistics, 30(4): 1199-1229.
Hsu T.M., Emura T., Fan T.H. (2016) Reliability inference for a copula-based series system life test under multiple type-I censoring. IEEE Transactions on Reliability, 65(2): 1069-1080.
Lawless J.F. (2003) Statistical models and methods for lifetime data (2nd ed.). A John WILEY & SONS, Hoboken, New Jersey.
Lindley D.V., Singpurwalla N.D. (1986) Multivariate Distributions for the life lengths of components of a system sharing a common environment. Journal of Applied Probability, 23(2): 418-431.
Mardia K.V. (1970) Families of Bivariate Distributions. Griffin′s Statistical Monographs and Courses, London.
Navarro J., Ruiz J.M. Sandoval C.J. (2008) Properties of systems with two exchangeable Pareto components. Statistical Papers, 49(2):177-190.
Nelsen R.B. (2006) An introduction to copulas (2nd ed.). Springer, New York.
Noughabi M.S., Kayid M. (2017) Bivariate quantile residual life: a characterization theorem and statistical properties. Statistical Papers, DOI: 10.1007/s00362-017-0905-9.
R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, R version 3.2.1.
Sankaran P.G., Nair N.U. (1993) A Bivariate Pareto model and its applications to reliability. Naval Research Logistics, 40(7): 1013-1020.
Sankaran P.G., Kundu D. (2014) A Bivariate Pareto model. A journal of Theoretical and applied statistics, 48(2): 241-255.
Sklar A. (1959) Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris, 8: 229-231.
Shih J.H. (2016) Dependence measures and competing risks models under the generalized Farlie-Gumbel-Morgenstern copula. Master thesis.
指導教授 江村剛志 審核日期 2017-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明