博碩士論文 104226002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.223.3.101
姓名 曾仲鎧(Chung-Kai Tseng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 基於電漿增強之顏色分辨應用於奈米環境偵測
(Nano-environment Sensing Based on Plasmonically Enhanced Color Discrimination)
相關論文
★ 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究★ 以氬離子雷射對玻璃材料加工之研究
★ 以裸光纖激發球共振腔之共振譜研究★ 錐狀平面波導光柵結構與微米小球共振腔之光耦合效率研究
★ 溶膠凝膠法合成以鉭元素為基礎的全固態電致變色元件★ S型彎曲波導與微米小球共振腔之光耦合效率研究
★ 錐狀光纖與微米球共振腔耦合之研究與應用★ 以鎖模鈦藍寶石飛秒雷射雙光子聚合製作光波導微結構之研究
★ 利用光子晶體的能隙邊緣移動達成全光開關之研究★ 利用繞射圖形檢測錐狀光纖的製造與品質
★ 利用雙光子聚合技術製作高耦合效率波導陣列光纖耦合器★ 光學印刷電路板之製作與特性分析
★ 鈉鉀離子交換波導之製作及其表面消逝波之研究★ 拉伸式長週期光纖光柵的模態色散現象研究
★ 可調式窄頻液晶濾波器★ 基於D形光纖之拉曼感測器模擬與設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-5-1以後開放)
摘要(中) 本論文利用彩色CCD影像判斷奈米結構環境下的光譜變化,而在此論文中使用的檢測方式為改變環境折射係數,並以彩色CCD影像分析其光譜飄移現象。使用的奈米結構為奈米金粒子所構成的球形雙子及單顆球形粒子,於模擬中推估其隨環境折射係數變化所造成的光譜波峰飄移量。在實驗中將不同的折射率匹配液滴於樣品表面,以彩色CCD擷取包含奈米結構之影像進行分析,並以光譜儀測量奈米結構之光譜做為驗證。
摘要(英) In this study, the spectrum shift due to nano-environmental variation is determined by color CCD images. To mimic this, index matching fluid with different refractive indices were drop coated on isolated Au nano spheres in forms of monomer and dimers. The scattered image was then recorded by color CCD and the sRGB values were converted to CIE 1931 color space. The color difference in response to the corresponding index difference was compared to that obtained by spectrometer.
關鍵字(中) ★ 奈米光學
★ 色彩學
★ 米氏理論
★ 影像分析
關鍵字(英)
論文目次 中文摘要 v
Abstract vi
誌謝 vii
目錄 viii
圖目錄 x
表目錄 xiii
第一章 緒論 1
1-1 前言 1
1-2 歷史背景 2
1-3 文獻回顧 3
1-4 研究動機 3
1-5 論文架構 4
第二章 研究方法 5
2-1 米氏理論 5
2-1-1 米氏理論簡介 5
2-1-2 米氏理論推導 6
2-1-3 平面波激發球體推導 11
2-1-4 平面波激發球體模擬 16
2-2 廣義米氏理論及電漿效應 19
2-2-1 廣義米氏理論及電漿效應簡介 19
2-2-2 勞倫茲-杜德模型 20
2-2-3 電漿效應 26
2-2-4 廣義多顆粒子米氏解 32
2-2-5 球型雙子之電漿效應 36
2-3 色度系統 44
2-3-1 色度系統發展簡介 44
2-3-2 sRGB色彩空間 49
第三章 實驗設計與架構 51
3-1 樣品製作與實驗架構 51
3-2 波峰紅移模擬分析 57
3-3 實驗分析流程 61
第四章 實驗結果與討論 66
4-1 穩定性測試 66
4-2 測試實驗 71
4-3 正式實驗 75
第五章 結論與未來展望 91
參考文獻 92
參考文獻 [1] G. Mie, Ann. Physik, vol. 25, pp.377, 1908.
[2] Yu-Lin Xu and Bo Å. S. Gustafson, “An analytical solution to electromagnetic multisphere-scattering-the scattering formulation used in codes gmm01f.f and gmm01s.f ,” University of Florida, 2003.
[3]C. Ma ̈tzler, “MATLAB Functions for Mie Scattering and Absorption,” University of Berm, 2002.
[4]H. Xu, “Calculation of the near field of aggregates of arbitrary spheres,” J. Opt. Soc. Am. A 21, 804-809, 2004.
[5]R. Gans, “Über die Form ultramikroskopischer Goldteilchen,“ Ann. Phys., 1912.
[6]B. T. Draine, P. J. Flatau, “User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3,“ arXiv:1305.6497, 2013.
[7]J. Crompton, S. Yushanov, K. Koppenhoefer, “Mie Scattering of Electromagnetic Waves,“ COMSOL conference, 2013.
[8]J. Gargiulo, S. Cerrota, E. Corte ́s, I. L. Violi, F. D. Stefani, “Connecting Metallic Nanoparticles by Optical Printing,“ Nano Lett., 2016.
[9]A. S. Urban, A. A. Lutich, F. D. Stefani, J. Feldmann, “Laser Printing Single Gold Nanoparticles,“ Nano Lett., 2010.
[10]K. Wang, E. Schonbrun, K. B. Crozier, “Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from Near-Field Coupling between Gold Particle and Gold Film,“ Nano Lett., 2009.
[11]Allen H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,“ Nature, 2009.
[12]H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, C. Zhu, “Arrays of Cone-Shaped ZnO Nanorods Decorated with Ag Nanoparticles as 3D Surface-Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls,“ Adv. Funct. Mater., 2012.
[13]J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, J. J. Baumberg, ”Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett., 2013.
[14]R. Chikkaraddy, X. Zheng, F. Benz, L. J. Brooks, Bart de Nijs, C. Carnegie, Marie-Elena Kleemann, J. Mertens, R. W. Bowman, Guy A. E. Vandenbosch, V. V. Moshchalkov, J. J. Baumberg, “How Ultranarrow Gap Symmetries Control Plasmonic Nanocavity Modes: From Cubes to Spheres in the Nanoparticle-on-Mirror,” ACS Photonics, 2017.
[15]A. Lombardi, A. Demetriadou, L. Weller, P. Andrae, F. Benz, R. Chikkaraddy, J. Aizpurua, J. J. Baumberg, “Anomalous Spectral Shift of Near-and Far-Field Plasmonic Resonances in Nanogaps, ACS Photonics, 2016.
[16]Y. Liu, W. Zhao, Y. Ji, R.-Y. Wang, X. Wu, X. D. Zhang, “Strong superchiral field in hot spots and its interaction with chiral molecules,” EPL, 2015.
[17]X. Tian, Y. Fang, M. Sun, “Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures,” Scientific Reports 5, 2015.
[18]L. Y. Wang, K. W. Smith, S. Dominguez-Medina, N. Moody, J. M. Olson, H. Zhang, W.-S. Chang, N. Kotov, S. Link, “Circular Differential Scattering of Single Chiral Self-Assembled Gold Nanorod Dimers,” ACS Photonics, 2015.
[19] C. Liang and Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2,1481-1495, 1967.
[20]H. Xu, “Calculation of the near field of aggregates of arbitrary spheres,” J. Opt. Soc. Am. A, 2004.
[21]S. N. Sheikholeslami, A. Garcia-Etxarri, J. A. Dionne, “Controlling the Interplay of Electric and Magnetic Modes via Fano-like Plasmon Resonances,” Nano Lett., 2011.
[22]H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, “Shape-and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles,” Langmuir, 2008.
[23]J. J. Mock, D. R. Smith, S. Schultz, “Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles,” Nano Lett., 2003.
[24]M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers,” J. Am. Chem. Soc., 2011.
[25]P. Chen, B. Liedberg, “Curvature of the Localized Surface Plasmon Resonance Peak,” Anal. Chem., 2014.
[26]Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, Joel K. W. Yang, ”Printing Beyond sRGB Color Gamut by Mimicking Silicon Nanostructures in Free-Space,” Nano Lett., 2017.
[27]S. C. Gladden, “A Simple Method of Determining the Refractive Index of a Liquid,” Rev. Sci. Instrum., 1933.
[28]S. Singh, “Diffraction method measures refractive indices of liquids,” Phys. Educ., 2004.
[29]Nemoto S., “Measurement of the refractive index of liquid using laser beam displacement,” Appl Opt., 1992.
[30] J. Y. Walz, “Ray optics calculation of the radiation forces exerted on a dielectric sphere in an evanescent field.,” Appl. Opt., vol. 38, Sep. 1999.
[31] C. Bohren and D. Huffman , Absorption and Scattering of light by small Particles(Wiley, New York, 1983).
[32] R. Moritz. Plasmonische Nahfeldresonatoren aus zwei biokonjugierten Goldnanopartikeln. Doktorarbeit, LMU München, 2008.
[33]P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,”Phys. Rev. B, vol. 6, Dec. 1972.
[34]W. J. Wiscombe, “Improved Mie scattering algorithms,”Appl. Opt., vol. 19, 1980.
[35]D. W. Mackowski, ”Analysi of radiative scattering for multiple sphere configurations,” R. Soc., vol. 433, 1991.
[36]K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. II: Clusters of arbitrary configuration,” Opt. Lett., 1988.
[37]S. A. Maier, Plasmonics:Fundamentals and Applications, Springer, 2007.
[38]P. K. Jain, M.A. El-Sayed, “Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing,” Nano Letters, vol. 8, 4347, 2008.
[39]P. Nordlander, C. Oubre, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Letters, vol. 4, 899, 2004.
[40]N. Zohar, L. Chuntonov, G. Haran, “The simplest plasmonic molecules: Metal nanoparticle dimers and trimers,” J. Photochem. Photobiol. C, vol. 21, 26, 2014.
[41]A. D. Rakic ̀, A. B. Djuris ̌ic ́, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Optics 37, 5271-5283, 1998.
[42]J. D. Jackson, Classical Electrodynamics Third Edition, Wiley, 1999.
[43]E. F. Schubert, Light-emitting diodes, New York, 2003.
[44]N. Ohta, Colorimetry:fundamentals and applications, Wiley, 2005.
[45]W. R. J. Brown, D. L. MacAdam, “Visual Sensitivities to Combined Chromaticity and Luminance Differences,” J. Opt. Soc. Am., vol.39, 808, 1949.
[46]M. Stokes, M. Anderson, S. Chandrasekar, R.Motta, “A Standard Default Color Space for the Internet-sRGB,” Ver. 1.10, 1996.
[47]簡仲信,基於鈉鉀離子交換波導之光學力推動金奈米球,國立中央大學光電所碩士論文,中華民國一零四年。
[48]R. C. Gonzalez, R. E. Woods, Digital Image Processing Second Edition, Prentice Hall, 1992.
[49]R. W. Pridmore, M. Melgosa, “Effect of luminance of samples on Color Discrimination Ellipses: Analysis and Prediction of Data,” Color Res. Appl., 2005.
指導教授 戴朝義 審核日期 2018-5-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明