博碩士論文 104226016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.116.90.141
姓名 張雅茹(Ya-Ju Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 彎曲波導耦合表面電漿子研究
(Surface Plasmon Generation on Curved Waveguides)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中,我們提出利用彎曲波導耦合表面電漿於金屬微米半環上,透
過改變微米金屬環與彎曲波導的相對位置,獲得能夠在金屬微米環上增強
表面電漿共振的結構,並使用使用限時域差分法 (Finite-Difference Time-
Domain Method, FDTD)來模擬實際電磁波於波導內傳播及耦合到金屬環上
產生表面電漿共振模態的行為。
本論文藉由改變波導使用的材料,將傳統稜鏡耦合使用的折射率為1.5
的玻璃提升到具有較高折射率為1.7 的波導,而此結構可利用鍺(Ge)氧化物
來實現,這樣的改進使光場能更好的局限於波導內,使更多能量能夠耦合到
金屬環上並增強表面電漿耦合,使該結構具對環境變化具有較高靈敏度,使
用光偵測器結合本元件可將靈敏度提高至10-10RIU。
摘要(英) In this thesis, we launched a light in TM mode into a curved waveguide to generate surface plasmon polariton on a metallic micro-ring made by gold in Otto configuration. By changing the location of metallic micro-ring to curved waveguide, we can enhance the strength of the surface plasmon resonance. The structure is analyzed by the Finite-Difference Time-Domain Method. The refractive index of the curved waveguide is changed from 1.5 to 1.7. The confinement ability of the waveguide is improved. The energy coupled on metallic micro-ring is used to excite the surface plasmon polariton. The device shows a better sensitivity 10-10RIU.
關鍵字(中) ★ 彎曲波導
★ 表面電漿
★ 感測器
關鍵字(英) ★ curved waveguide
★ Surface Plasmon
★ sensor
論文目次 目錄
中文摘要 ................................ ................................ ................................ ................ i
Abstract ................................ ................................ ................................ ................. ii
目錄 ................................ ................................ ................................ ...................... iii
圖目錄 ................................ ................................ ................................ .................. vi
表格目錄 ................................ ................................ ................................ ............... x
第一章 緒論 ................................ ................................ ................................ ......... 1
1-1 前言 ................................ ................................ ................................ ......... 1
1-2 表面電漿偏極子激發條件與耦合結構 ................................ ................ 3
1-2-1 稜鏡 耦合 (prism coupler) ................................ ................................ .... 4
Otto架構 (Otto configuration)[6] ................................ ............................ 4
Kretschmann架構 (Kretschmann configuration)[7] ............................... 6
1-3 積體化表面電漿子共振腔感測器發展回顧 ................................ ........ 7
1-4 研究架構 ................................ ................................ ............................... 11
1-5 彎曲波導耦合表面電漿................................ ................................ ... 12
1-6 研究動機 ................................ ................................ ............................... 14
1-7 論文架構 ................................ ................................ ............................... 14
1-8 結論 ................................ ................................ ................................ ....... 15
第二章 基本理論與模擬方法 ................................ ................................ ......... 16
iv
2-2 表面電漿介紹與理論 ................................ ................................ ........... 16
2-2-1 表面電漿簡介 ................................ ................................ ................... 16
2-2-2 金屬的光學反應................................ ................................ ............... 17
Drude model ................................ ................................ .......................... 19
2-2-3 金屬介面與電物質的表漿模態 ................................ ........... 23
TM極化電磁 波 ................................ ................................ .................... 24
輻射性表面電漿模態 ................................ ................................ ........... 27
非輻射性表面電漿模態 ................................ ................................ ....... 28
2-3 有限時域差分法 (Finite-difference time-domain method, FDTD) ... 30
FDTD數值模擬穩定性 ................................ ................................ ........ 35
2-4 保角轉換理論 (The conformal transformation)[37,38] ........................ 36
2-5 等效折射率分析法 (Effective index approximation) ........................... 44
2-6 結論 ................................ ................................ ................................ ..... 47
第三章 彎曲波導之設計與優化 ................................ ................................ ..... 48
3-1-1 以稜鏡架構產生表面電漿 ................................ ............................... 48
3-1-2 利用保角轉換及 Helmholtz equation決定波導尺寸 ..................... 54
3-2-1 彎曲波導寬度之優化 ................................ ................................ ....... 59
3-2-2 確認彎曲波導寬度................................ ................................ ........... 62
3-2 彎曲波導外圍光場損耗之處理與結構優化 ................................ ...... 64
3-3 結論 ................................ ................................ ................................ ....... 66
v
第四章 彎曲波導耦合表面電漿結構之設計與優化................................ ..... 67
4-1 偵測器 (monitor)設置 ................................ ................................ ........... 67
4-2 環境折射率改變對金屬吸收光能量的影響 ................................ ...... 70
4-3 波導折射率改變對輸出光強度的影響 ................................ .............. 74
4-3-1 波導材料為 1.5 ................................ ................................ ................. 75
4-4 結構對環境折射率改變之靈敏度測試 ................................ .............. 78
4-5 結論 ................................ ................................ ................................ ....... 81
第五章 結論與未來展望 ................................ ................................ ................... 83
5-1 論文總結 ................................ ................................ ............................... 83
5-2 未來工作 ................................ ................................ ............................... 85
參考文獻 ................................ ................................ ................................ ............. 86
參考文獻 參考文獻
[1] 吳民耀、劉威志, "表面電漿子理論與模擬," 物理雙月刊, 廿八卷二期, 489 (2006).
[2] B. Liedberg, C. Nylander, I. Lundstrom, "Surface Plasmon resonance for gas detection and biosensing," Sensors and Actuators 4, 299 (1982).
[3] I. W. Chung, R. Bernhardt, J. C. Pyun, "Sequential analysis of multiple analytes using surface plasmon resonance biosensor," J. Immunol. Methods 311, 178 (2006).
[4] 易政男 , "藉由奈米電漿子偵測信號強化之表面共振與拉曼散色生物感測器 ," 國立中央大學光電科技研究所 國立中央大學光電科技研究所 , 博士論文 (2005).
[5] 邱國斌、蔡定平, "金屬表面電漿簡介," 物理雙月刊, 28 , 472頁 (2006).
[6] A. Otto, Prof. Rollwagen, "Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection," Zeitschrift ffir Physik 216, 398 (1968).
[7] E. Kretschmann, H. Raether, "Radiative Decay of Non Radiative Surface Plasmons Excited by Light," Zeitschrift für Naturforschung A 23, 213 (1968).
[8] P. V. Lambeck, "Integrated opto-chemical sensors," Sensors and Actuators B 8, 103 (1992).
[9] K. Djordjev, S. J. Choi, S. J. Choi, P. D. Dapkus, "Gain trimming of the resonant characteristics in vertically coupled InP microdisk switches," Appl. Phys. Lett. 80, 3467 (2002).
[10] K. Djordjev, S. J. Choi, S. J. Choi, P. D. Dapkus, "Active semiconductor microdisk devices," IEEE J. Lightwave Technol. 20, 105 (2002).
[11] K. Djordjev, S. J. Choi, S. J. Choi, P. D. Dapkus, "Vertically coupled InP microdisk switching devices with electroabsorptive active regions," IEEE Photon. Technol. Lett. 14, 1115 (2002).
[12] K. Djordjev, S. J. Choi, S. J. Choi, P. D. Dapkus, "Study of the effects of the geometry on the performance of vertically coupled InP microdisk resonators," IEEE J. Lightwave Technol. 20, 1485 (2002).
[13] K. Djordjev, S. J. Choi, S. J. Choi, P. D. Dapkus, "Microdisk tunable resonant filters and switches," IEEE Photon. Technol. Lett. 4, 828 (2002).
[14] K. Djordjev, S. J. Choi, S. J. Choi, P. D. Dapkus, "High-Q vertically coupled InP microdisk resonators," IEEE Photon. Technol. Lett. 14, 331 (2002).
[15] S. Xiao, L. Liu, M. Qiu, "Resonator channel drop filters in a plasmon-polaritons metal," Opt. Express 14, 2932 (2006).
[16] J. W. Oh, J. Choi, N. Kim, "Tunable color filter with surface plasmon resonance using organic photorefractive composite," Applied Optics. 48, 3160 (2009).
[17] Y. Shen, G. P. Wang, "Gain-assisted time delay of plasmons in coupled metal ring resonator waveguides," Opt. Express 17, 12807 (2009).
[18] A. V. Krasavin, A. V. Zayats, "Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides," Applied Phys. Lett. 97, 041107 (2010).
[19] S. Iyer, S. Popov, A. T. Friberg, "Linear birefringence in split-ring resonators," Opt. Lett. 37, 2043 (2012).
[20] X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, A. Q. Liu," A nano-opto-mechanical pressure sensor via ring resonstor," Opt. Express 20, 8535 (2012).
[21] J. Lee, J. Song, G. Y. Sung, J. H. Shin, "Plasmonic Waveguide Ring Resonators with 4 nm Air Gap and λ0^2/15000 Mode-Area Fabricated Using Photolithography," Nano Lett. 14, 5533 (2014).
[22] E. M. Larsson, J. Alegret, M. Kall, D. S. Sutherland, "Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors," Nano Lett. 7, 1256 (2007).
[23] Q. Zhang, X. Wen, G. Li, Q. Ruan, J. Wang, Q. Xiong, "Multiple Magnetic Mode-Based Fano Resonance in Split-Ring Resonator Disk Nanocavities," ACS Nano 7, 11071 (2013).
[24] J. C. Abanulo, R. D. Harris, P. N. Bartlett, J. S. Wilkinson, "Waveguide surface plasmon resonance sensor forelectrochemically controlled surface reactions," Applied Optcs. 40, 6242 (2001).
[25] C. S. Cheng, Y. Q. Chen, C. J. Lu, "Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer," Talanta. 73, 358 (2007).
[26] Y. C. Li, Y. F. Chang, L. C. Su, C. Chou, "Differential-Phase Surface Plasmon Resonance Biosensor," Analytical Chemistry 80, 5590 (2008).
[27] R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine 4, 396 (1902).
[28] D. Pines, D. Bohm, "A collective description of electron interations: Coulomb interactions in a degenerate electron gas," Phys.Rev. 92, 609 (1953).
[29] R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phy. Rev.106, 874, (1957).
[30] N. W. Ashcroft, N. D. Mermin, Solid State Physics., Harcourt. (1976).
[31] H. Raether, "Surface Plasmons on Smooth and Rough Surfaces and on Gratings," Springer Verlag., Berlin (1998).
[32] A.V. Krasavin, A. V. Zayats, "Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides," Appl. Phys.Lett., 97, 041107 (2010).
[33] D. Ahmadian, C. Ghobadi, J. Nourinia, "Ultra-compact two-dimensional plasmonic nano-ring antenna array for sensing applications," Opt Quant Electron 46, 1097 (2014).
[34] D. Ahmadian, C. Ghobadi, J. Nourinia, "Tunable Plasmonic Sensor With Metal–Liquid Crystal–Metal Structure," IEEE Photonics Journal 7, 4800310 (2015).
[35] 李長綱 , "電磁學與電磁波的理論及應用(下)," 10-8頁 (2012).
[36] K. S. Yee, "Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations," IEEE Tran. on Ant. and Pro, 14, (1966).
[37] R. Schinzinger, P. A. A. Laura, Conformal Mapping: Method and Application, First Edition, Dover.
[38] 伍茂仁 , "Equivalent Waveguide Theory Based on Conformal Mapping 87 Method : Design and Analysis of Ideal Optical Waveguides," 國立中央大學 , 光電科學研究所 光電科學研究所 光電科學研究所 光電科學研究所 光電科學研究所 , (2001).
[39] O. Alexandrov, "self-made with MATLAB," (2008).
[40] K. Okamoto, "Fundamentals of Optical Waveguide," First edition, Academic.
[41] H. Zhou, C. Li, X. Chen, "Analysis of the positive or negative lateral shift of the reflected beam in Otto configuration under grazing incidence," Chinese Optics Letters. 6, 446 (2008).
[42] X. Zhou, X. Ling, "Enhanced Photonic Spin Hall Effect Due to Surface Plasmon Resonance," IEEE Photonics Journal. 8, 1943 (2016).
[43] S. Roh, T. Chung, B. Lee, "Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors," Sensors, 11(2), 1565 (2011).
[44] D. P. Cai, C. C. Chen, C. C. Lee, T. D. Wang, "Study of Coupling Length of Concentrically Curved Waveguides," IEEE Photon. J., 4, 80 (2012).
[45] https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=3328#6035
[46] https://www.researchgate.net/post/What_is_a_refractive_index_unit
[47] J. M. Bingham, J. N. Anker, L. E. Kreno, R. P. V. Duyne, "Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy," J. AM. CHEM. SOC. 132, 17358 (2010). [48] T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, H. Ye, "The sensing characteristics of plasmonic waveguide with a ring resonator," Opt. Express 22, 7669 (2014). [49] X. Jiang, J. Ye, J. Zou, M. Li, J. J. He, "Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode," Opt. Lett. 38, 1349 (2013).
[50] L. Jin, M. Li, J. J. He, "Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect," Optics Commun. 284, 156 (2011).
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2017-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明