博碩士論文 104226017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.231.102.4
姓名 黃志偉(Chih-Wei Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 不同製備方式氧化矽薄膜應用於矽晶太陽能電池之鈍化接觸層研究
(Use Different Methods to Grow Silicon Oxide Thin Film for Passivated Contact on Silicon Solar Cell)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-7-1以後開放)
摘要(中) 在矽晶太陽能電池中表面鈍化一直是設計以及優化的重要的目標,從早期的只有背電場的鈍化,到後來研究者開始研究正面氮化矽鈍化,當正面鈍化已經研究完善時,研究者又開始把目標轉移到另一個嚴重的複合區域—電池的背表面。在90年代,新南威爾斯大學(UNSW)開始引入介質層的鈍化局部開孔的PECR/PERL等設計,解決了背面的鈍化的問題,但開孔處嚴重的複合速率(Recombination Rate)還是無法解決,因此開始有研究希望能夠解決開孔問題,鈍化接觸(Passivated Contact)的技術開始被提出。
本研究利用濕式化學氧化法(Wet chemical oxidation)、光化學氧化法,電漿輔助化學氣相沉積法,在氧化矽薄膜上堆疊氮化矽薄膜,量測矽晶片載子生命週期(lifetime),其中以濕式化學氧化法載子生命週期442 us鈍化效果最好,利用傅立葉轉換紅外光譜(FTIR),從圖譜可以得知在1080 cm-1的位置證明有氧化物Si-O-Si(stretching)鍵結。本研究將針對濕式化學氧化法來生長氧化矽薄膜,調變不同的參數條件,搭配熱處理,載子生命週期可以提升至1108 us,探討薄膜鈍化的特性,找出結構緻密性較高以及較低的漏電流密度的氧化矽薄膜。
最後將氧化矽薄膜應用於矽晶太陽能電池上,和無氧化矽鈍化薄膜的矽晶太陽能電池做光電轉換效率比較,最後得到具鈍化接觸層的矽晶太陽能電池開路電壓從原本551 mV提升至625 mV(上升13 %)、短路電流29.8 mA、填充因子0.59,效率能從10.8 %提升至11.5%。
摘要(英)
In the silicon solar cell surface passivation has always been an important goal of design and optimization. In the early, the back electric field passivation has been stuided, and later researchers began to study the positive silicon nitride passivation, when the front passivation has been studied, the researchers also began to move the target to another serious compound area - the back surface of the cell. In the 1990s, the University of New South Wales (UNSW) began to introduce passivated PECR / PERL design of the dielectric layer to solve the problem of passivation on the back, but the serious recombination rate at the opening can not be resolved, so began to study hope to be able to solve the opening problem, passivated contact technology began to be raised.
In this study, silicon nitride film was deposited on silicon oxide films by wet chemical oxidation, photo-oxidation oxidation and plasma enhance chemical vapor deposition. The lifetime of silicon wafer was measured. FTIR can be seen from the figure that the position of the Si-O-Si bonding at the position of 1080 cm-1 by the wet chemical oxidation method. In this study, the silicon oxide film was grown by wet chemical oxidation method, and the change of different parameters. With the heat treatment, the lifetime can be increased to 1108 us, and the characteristics of film passivation were discussed. To find a structure of high density and low leakage current density of silicon oxide film.
Finally, the silicon oxide film was applied to the silicon solar cell, and the silicon solar cell with no silicon oxide film is compared with the photoelectric conversion efficiency. The open-circuit voltage of the silicon solar cell with the passivation layer was increased from the original 551 mV to 625 mV (up 13%), short circuit current 29.8 mA, fill factor 0.59, efficiency from 10.8% to 11.5%.
關鍵字(中) ★ 鈍化接觸
★ 氧化矽
★ 濕式化學氧化法
★ 矽晶太陽能電池
關鍵字(英) ★ passivated contact
★ silicon oxide
★ wet chemical oxidation method
★ silicon solar cell
論文目次
ABSTRACT IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 3
1-4 論文架構 4
第二章 基本原理與文獻回顧 5
2-1 太陽能電池基本運作與分析原理 5
2-2 鈍化接觸原理與介紹 5
2-2.1 鈍化接觸原理 5
2-2.2硝酸鈍化 6
第三章 實驗設備與量測機台 8
3-1 二氧化矽薄膜製備 8
3-1.1 濕式化學氧化法製備 8
3-1.2 光氧化學法製備 10
3-1.3 電漿輔助化學氣相沉積法製備 11
3-2 鈍化接觸太陽能電池製備流程 12
3-2.1 晶圓清洗流程 12
3-2.2 太陽能電池製備流程 14
3-3 太陽能電池製程設備 16
3-3.1 中電流離子佈植設備 (The Varian Ion Implant Systems) 16
3-3.2 離子濺鍍系統 (Sputter) 16
3-3.3 電子槍蒸鍍系統 (E-gun) 17
3-3.4 快速熱退火 (ARTS-RTA) 18
3-4 氧化矽薄膜分析設備 19
3-4.1 微觀傅立葉轉換紅外光譜 (Micro-FTIR) 19
3-4.2 光電導生命週期量測儀(Photoconductance lifetime testor) 21
3-4.3 X 光光電子能譜儀(X-ray photoelectron spectroscopy) 21
3-4.4 穿透式電子顯微鏡 (TEM) 22
3-4.5 I-V 電性量測系統 23
3-5 太陽能電池量測設備 24
3-5.1四點探針(Four-point Probe) 24
3-5.2 霍爾量測儀 26
3-5.3場放射掃描式電子顯微鏡(SEM) 26
3-5.4 高解析度X光繞射儀 (HRXRD) 27
3-5.5 太陽光模擬器 (Solar simulator) 28
第四章 實驗結果與討論 30
4-1 不同方式生長二氧化矽薄膜特性分析 30
4-1.1 二氧化矽薄膜對矽基板鈍化的影響 30
4-1.2 二氧化矽薄膜對漏電流的影響 31
4-1.3 二氧化矽薄膜對次氧化比的分析 32
4-1.4 二氧化矽薄膜對傅利葉轉換紅外光譜的分析 34
4-2 調變不同濕化學氧化參數生長二氧化矽薄膜對矽基板鈍化的影響 35
4-2.1 調變生長時間 35
4-2.2 調變生長溫度 36
4-2.3 調變生長濃度 37
4-3 不同退火溫度對二氧化矽薄膜特性分析 39
4-3.1 退火處理後載子生命週期的量測 39
4-3.2 退火處理後電性分析 41
4-4 鈍化接觸層對矽晶太陽能電池效率之影響 42
4-4.1 離子佈植後摻雜薄膜 42
4-4.2 氧化銦錫薄膜 43
4-3.3 電極金屬薄膜與太陽能電池的表現 47
第五章 結論與未來展望 49
5-1 結論 49
5-1.1 二氧化矽薄膜的製備以及改善 49
5-1.2二氧化矽薄膜對矽基太陽能電池的影響 49
5-2 未來展望 50
5-2.1 二氧化矽薄膜製備方法 50
5-2.2 優化矽晶太陽能電池其他層薄膜 50
參考文獻 51
參考文獻

[1] “Renewables 2017 Global Status Report”, Renewable Energy Policy Network for
the 21st Century , pp. 29 ,2017.
[2] Marco Ernst, Daniel Walter, Andreas Fell, Bianca Lim, and Klaus Weber “Efficiency Potential of P-Type Al2O3/SiNx Passivated PERC Solar Cells With
Locally Laser-Doped Rear Contacts” Ieee Journal of Photovoltaics, Vol.6,No.3,May 2016.
[3] Anamaria Moldovan, Frank FeldmannI Kai Kaufmann, Susanne Richter,
Martina Wemer, Christian Hagendorf, Martin Zimmer, lochen Rentschl and Martin
Hermle “Tunnel Oxide Passivated Carrier-Selective Contacts based on ultra-thin
SiO2 Layers grown by Photo-Oxidation or Wet-Chemical Oxidation in ozonized
Water” IEEE 42nd Photovoltaic Specialist Conference (PVSC) page:1~6. 2015
[4] H. Kobayashi , K. Imamura, W.-B. Kim, S.-S. Im, Asuha“Nitric acid
oxidation of Si (NAOS) method for low temperature fabrication of SiO2/Si and
SiO2/SiC structures” Applied Surface Science 256 5744–5756. 2010
[5] David L. Young, William Nemeth, Sachit Grover, Andrew Norman,
Benjamin G. Lee, Paul Stradins National Renewable Energy Laboratory,
Golden,CO,80401 USA “Carrier-Selective, Passivated Contacts for High
Efficiency Silicon Solar Cells Based on Transparent Conducting Oxides”
IEEE 40th Photovoltaic Specialist Conference (PVSC) page:1~5. 2014
[6] Henry Hieslmair, Ian Latchford, Lisa Mandrell, Moon Chun & Babak Adibi,
“Ion Implantation for silicon solar cells”, Intevac, Santa Clara, California, USA
[7] Yuguo Tao, ijaykumar Upadhyaya , Ying-Yuan Huang, Chia-Wei Chen, Keenan
Jones, Ajeet Rohatgi “Carrier Selective Tunnel Oxide Passivated Contact Enabling
21.4% Efficient Large-area N-type Silicon Solar Cells” IEEE 43rd.
Photovoltaic Specialists Conference (PVSC) page:2531~2535. 2016
[8] David L. Young, William Nemeth, Sachit Grover, Andrew Norman, Benjamin G.
Lee, Paul Stradins “Carrier-Selective, Passivated Contacts for High Efficiency
Silicon Solar Cells Based on Transparent Conducting Oxides ”National Renewable
Energy Laboratory, Golden, CO, 80401 USA 2014.
[9] Shin-ichi Muramatsu, Tsuyoshi Uematsu, Hiroyuki Ohtsuka, Yoshiaki
Yazawa,Terunori Warabisako, Hiroshi Nagayoshi, Kouichi Kamisako, “ Effect of hydrogen radical annealing on SiN passivated solar cells”. Solar Energy Materials and Solar Cells. 65(1 -4): p. 599-606. 2001
[10] Youngseok Lee, Daeyeong Gong, Nagarajan Balaji, Youn-Jung Lee and Junsin Yi “ Stability of SiNX/SiNX double stack antireflection coating for single crystalline silicon solar cells. ” Nanoscale Research Letters. 7: p.1-6. 2012
[11] Dauwe, Stefan, Lutz Mittelstädt, Axel Metz, Rudolf Hezel.“Experimental evidence of parasitic shunting in silicon nitride rearsurface passivated solar cells. ”Progress in Photovoltaics. 10(4): p. 271 -278. 2002
[12] S. Salemi1, N. Goldsman , D. P. Ettisserry, Akturk, and Lelis “The effect of defects and their passivation on the density of states of the 4H-silicon-carbide/silicon-dioxide interface”. Journal of Applied Physics.113(5).2013
[13] Suhaila Sepeai, M. Y. Sulaiman, Kamaruzzaman Sopian, and Saleem H. Zaidi “Surface passivation studies on n+pp+ bifacial solar cell. ” International Journal of Photoenergy, 2012.
[14] Ben Rabha, M. Salem and M.Gaidi. “Monocrystalline silicon surface passivation by Al2O3/porous silicon combined treatment. ” Materials Science and Engineering B-Advanced Functional Solid-State Materials. 178(9): p. 695-697. 2013
[15] G. Seguini1, E. Cianci1, C. Wiemer1, D. Saynova, J. A. M. van Roosmalen2“Si surface passivation by Al2O3 thin films deposited using a low thermal budget atomic layer deposition process. ” Applied Physics Letters. 102(13). 2013.
[16] Lachlan E.Blacka, Teng C.Khoa, Keith R.McIntoshb. “Surface passivation of boron-diffused p-type silicon surfaces with (100) and (111) orientations by ald Al2O3 layers. ” Ieee Journal of Photovoltaics. 3(2): p. 678-683. 2013
[17] Christoph Schwab, Andreas Wolf, Martin Graf, Nico Wohrle, Saskia K ¨ uhnhold, Johannes Greulich,Gero Kastner, Daniel Biro, and Ralf Preu “Recombination and optical properties of wet chemically polished thermal oxide passivated si surfaces. ”Ieee Journal of Photovoltaics. 3(2): p.613-620. 2013
[18] Mihailetchi, V.D., Y. Komatsu, and L.J. Geerligs, “Nitric acid pretreatment for the passivation of boron emitters for n-type base silicon solar cells. ”Applied Physics Letters, 2008.
[19] Takahashi, M., et al., “Ultrathin silicon oxynitride formed by low-energy electron impact plasma nitridation and chemical oxidation methods. ” Journal of Applied Physics. p. 726-731. 2003
[20] Pincik, E., et al., “On interface properties of ultra-thin and very-thin oxide/a-Si : H structures prepared by oxygen based plasmas and chemical oxidation. ” Applied Surface Science. 253(16): p. 6697-6715. 2007.
[21] Mizushima, S., et al., “Nitric acid method for fabrication of gate oxides in TFT. ”Applied Surface Science. 254(12): p. 3685-3689. 2008
[22] Kobayashi, H., et al., “ Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density. ”Journal of Applied Physics.94(11): p. 7328-7335. 2003
[23] Asuha, et al., “Nitric acid oxidation of silicon at similar to 120 ℃ to form 3.5-nm 716. SiO2/Si structure with good electrical characteristics. ”Applied Physics Letters. 85(17): p. 3783-3785. 2004
[24] Asuha, et al., “Postoxidation annealing treatments to improve Si/ultrathin SiO2 characteristics formed by nitric acid oxidation. ” Journal of the Electrochemical Society. 151(12): p. G824-G828. 2004

[25] Mihailetchi, V.D., Y. Komatsu, and L.J. Geerligs, “Nitric acid pretreatment for the passivation of boron emitters for n-type base silicon solar cells. ” Applied Physics Letters, 2008.
[26] Asuha, S. Imai, M. Takahashi, H. Kobayashi, Appl. Phys. Lett. 85 3783. 2004
[27] Asuha, S.-S. Im, M. Tanaka, S. Imai, M. Takahashi, H. Kobayashi, Surf. Sci. 600
2523. 2006
[28] S. Mizushima, S. Imai, Asuha, M. Takahashi, H. Kobayashi, Appl. Surf. Sci. 254
3685. 2008
[29] Donald A. Neamen, “Semiconductor Physics and Devices” , p.177–180, 2003.
[30] Bill Nemeth, David L. Young, Hao-Chih Yuan, Vincenzo LaSalvia, Andrew G.
Norman, Matthew Page,Benjamin G. Lee, Paul Stradins “Low Temperature
Si/SiOx/pc-Si Passivated Contacts to n-Type Si Solar Cells’ National Renewable
Energy Laboratory, Golden Colorado 80401 USA 2014
[31] Y. J. Chabal,Fundamental aspects of silicon oxidation: Springer-Verlag
Berlin,Heidelberg, New York, 200l.
[32] 工業技術研究院委託學術機構研究計畫期末報告,“應用於生醫檢測之光波
導氧化物薄膜製備及其光學常數之調控”,民國93年
[33] Asuha, et al., “Spectroscopic and electrical properties of ultrathin SiO2 layers formed with nitric acid. Surface Science”. 547(3): p. 275-283. 2003
[34] 黃惠良,曾百亨,太陽電池,五南出版社,民國九十七年
[35] 孟慶哲,方允樟,馬 雲,李文忠,金林峰,“退火溫度對 ITO 薄膜電導率的影響” 浙江師範大學數理與信息工程學院,2012
[36] Hirotoshi NagataTakashi ShinrikiKaori Shima, Masumi Tamai, and Eungi Min Haga, “Improvement of bonding strength between Au/Ti and films by Si layer insertion. ” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17, 1018 (1999)
[37] 彭永福,黃文堯,以溶膠凝膠法製備二氧化矽薄膜作TFT閘極絕緣層材料,國立中山大學光電工程學系,民國98年
[38] R Sharangpani and Sing-Pin Tay “ Effect of growth and annealing conditions on
interface charge of dry and wet oxides grown using rapid thermal oxidation. ”
Mattson Thermal Products, Inc., 4425 Fortran Drive, San Jose, CA 95134. 2002
指導教授 張正陽、李建階(Jenq-Yang Chang Jian-Jie Li) 審核日期 2017-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明