博碩士論文 104226030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.12.120.25
姓名 楊瑞豪(Rui-Hao Yang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 開孔電極結構對於垂直式有機電晶體電性影響之研究
(Effect of Electrical Characterization in Vertical Organic Transistors with Patterned Electrode Structure)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 微米光柵壓印有機太陽能電池主動層之研究★ 有機波導結構的ASE現象研究以及共振腔結構的模擬
★ 利用金屬微共振腔研究光與有機激發態強耦合現象★ 多層式雙極有機場效電晶體之研究
★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究
★ 有機染料分子薄膜之光電特性研究★ 多層結構有機電晶體之研究
★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象★ 有機強耦合共振腔元件設計與發光量測系統架設之研究
★ 強耦合有機微共振腔之設計與研究★ 光激發有機極化子元件之製作與量測
★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究★ 光激發有機極化子元件之模擬與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文研究N型有機材料C60的開孔式源極垂直電晶體,並探討不同源極結構對於垂直電晶體開/關電流比及電流密度之影響。利用膠體微影技術獲得大面積且高均勻性的單層奈米球膜作為金屬蒸鍍遮罩,可製作出高孔洞覆蓋率的開孔式源極。此外選用高功函數金屬銀作為源極材料,搭配全氟癸烷硫醇單分子層PFDT修飾銀源極功函數來提升與C60間的蕭特基能障,並比較孔洞覆蓋率及C60厚度對於垂直電晶體電性表現的影響。由實驗結果可知,在100 nm-C60有最大的開電流密度之收集,但關電流密度抑制能力差,已無明顯的開/關電流表現。為了有效抑制關電流密度,試著使用更高功函數金屬金、以硫醇基單分子層MUA優化銀源極表面形貌以及推疊金屬氧化物作為內部電流阻絕層。整體而言,以雙電子槍蒸鍍系統於開孔銀源極上鍍製適當厚度的Al2O3絕緣層,且搭配100 nm-C60主動層垂直電晶體可有效的抑制關電流密度至少一個數量級,其開電流密度可達101~102 mA/cm2和開/關電流比接近103,此電性表現以達到驅動OLED條件,未來可將垂直電晶體應用於顯示面板中。
摘要(英) The thesis studies different patterned source electrode structures and their effects on the on/off ratio and current density of C60 vertical organic transistors. By using colloidal lithography to prepare large area, highly uniform nanospheres monolayer as the evaporation mask, the patterned electrode with high perforations coverage was obtained. The device was fabricated with the high work function Ag source electrode modified with PFDT self-assembled monolayer (SAM) to increase Schottky barrier berween Ag and C60. Next the electrical performance of transistors with different perforations coverage and thickness of C60 layer was investigated. The experimental results showed that the transistor exhibits the highest on-current density with 100 nm C60, but the off-current increases significantly with source-drain voltage, and hence the on/off ratio is poor. In order to reduce the off-current density for 100 nm C60 transistors, several methods were investigated: Au electrode with a higher work function, using MUA-SAM to optimize surface morphology of electrode, and depositing metal oxide layer on Ag-source as a blocking layer. Overall, deposition of appropriately thick Al2O3 on Ag source by Double E-gun results in off-current about 10 times lower than Ag source treated with PFDT-SAM, while the on-current density reaches 101~102 mA/cm2 and on/off ratio is nearly 103. The device is expected to be used to drive OLEDs and applied for display technology in the future.
關鍵字(中) ★ 垂直式有機電晶體
★ 開孔電極結構
關鍵字(英)
論文目次 摘要 V
Abstract VI
致謝 VII
目錄 VIII
圖目錄 X
第一章 緒論 1
1-1 前言 1
1-1-1傳統有機薄膜電晶體 3
1-1-2蕭特基基底垂直電晶體 5
1-1-3研究目的與動機 9
第二章 基本理論 10
2-1膠體微影術簡介 10
2-1-1六方最密堆積自組裝效應 11
2-1-2無序排列自組裝效應 13
2-2垂直式電晶體之工作原理 16
2-1-2垂直式電晶體-關狀態操作機制 18
2-1-2垂直式電晶體-開狀態操作機制 21
2-1-2垂直式電晶體-轉換特性曲線與開/關電流比 24
第三章 實驗方法與步驟 25
3-1元件材料級結構介紹 25
3-1-1主動層材料介紹 25
3-1-2垂直式電晶體能階設計 27
3-1-3硫醇基自組性單分子層 28
3-1實驗方法與製備 32
3-2-1實驗儀器 32
3-2-2垂直式有機電晶體之製成步驟 40
3-3垂直式電晶體之模擬 45
第四章 結果與討論 46
4-1垂直電晶體之開孔式源極 46
4-1-1單層聚苯乙烯奈米球膜成長結果 46
4-1-2奈米級開孔式源極製作 47
4-1-3奈米級開孔源極結構之總結 51
4-2垂直式有機電晶體之電性探討 52
4-2-1以硫醇基單分子層修飾開孔式源極金屬功函數 52
4-2-2不同孔徑大小及開孔率垂直電晶體之模擬 54
4-2-3以硫醇基分子PFDT修飾金屬功函數之銀源極垂直電晶體 57
4-2-4高金屬功函數之金源極垂直電晶體 65
4-2-5以硫醇基分子MUA優化銀源極表面形貌 69
4-2-6以金屬氧化物抑制電晶體關電流密度 73
4-2-7垂直式有機電晶體電性之總結 81
第五章 結論與未來展望 83
參考文獻 85
參考文獻 [1] C. L. Lin, T. T. Tsai, IEEE Electron Device Lett. 28, 489 (2007).
[2] T. Sekitani, U. Zschieschang, H. Klauk, T. someya, Nature materials. 9, 1015 (2010).
[3] C. L. Fan, F. P. Tseng, H. L. Lai, B. J. Sun, K. C. Chao, Y. C. Chen, International Journal of Photoenergy. 30, 839301 (2013).
[4] K. Y. Wu, Y. T. Tao, C. C. Ho, W. L. Lee, T. P. Perng, Applied Physics Letters. 99, 093306 (2011).
[5] Y. C. Chao, C. H. Chung, H. W. Zan, H. F. Meng, M. C. Ku, Applied Physics Letters. 99, 233308 (2011).
[6] Y. C. Chao, M. C. Ku, W. W. Tsai, H. W. Zan, H. F. Meng, H. K. Tsai, Sh. F. Horng, Applied Physics Letters. 97, 223307 (2010).
[7] H. C. Lin, H. W. Zan , Y. C. Chao, M. Y. Chang, H. F. Meng, Science . 30, 054003 (2015).
[8] T. Hiroi, M. Nakamura, e-Journal of Surface Science and Nanotechnology. 3, 327 (2005).
[9] K. Fujimoto, T. Hiroi, K. Kudo, and M. Nakamura, Advanced Materials. 19, 525 (2007).
[10] L. Ma, Y. Yang, Applied Physics Letters. 85, 5084 (2004).
[11] C. Y. Chen, Y. C. Chao, H. F. Meng, S. F. Horng, Applied Physics Letters. 93, 223301 (2008).
[12] K. Nakamura, T. Hate, A. Yoshizawa, K. Obata, H. Endo, K. Kudo, Japanese Journal of Applied Physics. 47, 1889 (2008).
[13] K. Nakamura, T. Hate, A. Yoshizawa, Applied Physics Letters. 89, 103525 (2006).
[14] B. Liu, M. A. McCarthy, Y. Yoon, D. Y. Kim, Z. Wu, F. So, P. H. Holloway, J. R. Reynolds, J. Guo, A. G. Rinzler, Advanced Materials. 20, 3605 (2008).
[15] M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler, Science. 322, 570 (2011).
[16] W.D. Gill, Journal of Applied Physics. 43, 5033 (1972).
[17] Y. Kim , Y. J. Kwon , K. E. Lee, Y. Oh, M. K. Um, D. G. Seong , J. U. Lee, Nanomaterials. 6, 147 (2016).
[18] K. Horiuchia, S. Uchinoa, K. Nakadaa, N. Aokia, M. Shimizub, Y. Ochiai, Physical B. 329–333, 1538 (2003).
[19] Y. Kuzumoto, M. Kamura, S. Aomori, Applied Physics Letters. 91, 183514 (2007).
[20] B. Stadlober, M. Zirkl, M. Beutl, G. Leising, Applied Physics Letters. 86 242902 (2005).
[21] P Saikia, P. K. Saikia, B. Baishya, Brazilian Journal of Physics. 40, 357 (2010).
[22] M. Kitamura1, Y. Arakawa, Journal of physics. 20, 184011 (2008).
[23] A. Facchetti, M. Mushrush, H. E. Katz, T. J. Mark, Advanced Materials. 15, 33 (2003).
[24] R. Hofmockel , U. Zschieschang , U. Kraft, R. Rödel , N. H. Hansen ,M. Stolte , F. Würthner, K.Takimiya ,K. Kern, J. Pflaum, H. Klauk, Science Direct. 14, 3213 (2013).
[25] D. M. Taylor , E. R. Patchett , A. Williams , Z. Ding , H. E. Assender ,
J. J. Morrison, S. G. Yeates, Science Direct. 456, 85 (2015).
[26] A. J. Ben-Sasson, Z. Chen, A. Facchetti, N. Tessler, Applied Physics Letters. 100, 263306 (2012).
[27] O. Acton , M. Dubey , T. Weidner , K. M. O’Malley , T. W. Kim ,G. G. Ting , D. Hutchins , J. E. Baio , T. C. Lovejoy ,A. H. Gage ,D. G. Castner , H. Ma , A. K. Y. Jen, Advanced Functional Materials. 21, 1476 (2011).
[28] S. Y. Yang, K. Shin, C. E. Park, Advanced Functional Materials. 15, 1860 (2005).
[29] L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, R. H. Friend, Nature. 434, 192 (2005).
[30] A. J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G. L. Frey, N. Tessler, Applied Physics Letters. 95, 213301 (2009).
[31] C. M. Keum, I. H. Lee, S. H. Lee, G. J. Lee, M. H. Kim, S. D. Lee, Optics Express. 22, 14750 (2014).
[32] A. J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, N. Tessler, ACS Applied Mater. 7, 2149 (2015).
[33] M. G. Lemaitre, E. P. Donoghue, M. A. McCarthy, B. Liu, S. Tongay, B. Gila, P. Kumar, R. K. Singh, B. R. Appleton, A. G. Rinzler, ACS Nano. 6, 9095 (2012).
[34] W. Chen, A. Rinzler, J. Guo, Journal of Applied Physics. 113, 094507 (2013).
[35] W. Chen, A. G. Rinzler, Jing Guo, Journal of Applied Physics. 113, 234501 (2013).
[36] B. Liu, M. A. McCarthy, Y. Yoon, D. Y. Kim, Z. Wu, F. So, P. H. Holloway, J. R. Reynolds, J. Guo, A. G. Rinzler, Advanced Materials. 20, 3605 (2008).
[37] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A G. Rinzler, Science. 2305, 1273 (2004).
[38] M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler, Science. 332, 570 (2011).
[39] H. Yu, Z. Dong, J. Guo, D. Kim, F. So, ACS Applied Mater. 8, 10430 (2016).
[40] M. Greenman, A. J. Ben-Sasson, Z. Chen, A. Facchetti, N. Tessler, Applied Physics Letters. 103, 073502 (2013).
[41] A. J. Ben-Sasson , N, Tessler, Nano Letter. 12, 4729 (2012).
[42] G. M. Whitesides , B. Grzybowski, Science. 295, 2418 (2002).
[43] N. D. Denkov , D. Velev, P. A. Kralchevsky, I. B. Ivanov,J. H. Yoshimura, K. Nagayamat, Lagmuir. 8, 3183 (1992).
[44] Y. Xia, B. Gates, Y. Yin, Yu Lu, Advanced Materials. 12, 693 (2000).
[45] C. A. Johnson, A. A. Lenhoff, Journal of Colloid and Interface Science. 176, 587 (1996).
[46] M. Semmler, J. Ricˇka , M. Borkovec, Physicochemical and Engineering Aspects. 195, 79 (2000).
[47] P. Hanarp, D. S. Sutherland, J. Gold, B. Kasemo, Physicochemical and Engineering Aspects. 214, 23 (2003).
[48] Q. Yan, Li Gao, V. Sharma, Y. M. Chiang, C. C. Wong, Langmuir. 24, 11518 (2008).
[49] A. J. Ben-Sasson , N. Tessler, Journal of Applied Physics. 110, 044501 (2011).
[50] Y. Preezant, N. Tesslera, Journal of Applied Physics. 93, 2059 (2003).
[51] A. J. Ben-Sasson, M. Greenman, Y. Roichman, N. Tessler, Israel Journal of Chemistry. 54, 568 (2014).
[52] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Applied Physics Letters. 67, 121 (1995).
[53] O. Acton, G. Ting, H. Ma, A. K. Y. Jen, Applied Physics Letters. 93, 083302 (2008).
[54] E. Itoh, Y. Higashimoto, K. Miyairi, Japanese Journal of Applied Physics. 47, 480 (2008).
[55] Th. B. Singha, N. S. Sariciftci, Applied Physics Letters. 90, 213512 (2007).
[56] B. d. Boer, A. Hadipour, R. Foekema, T. v. Woudenbergh, M. M. Mandoc, V. D. Mihailetchi, P. W. M. Blom, Advanced Materials. 17, 621 (2005).
[57] P. Marmont , N. Battaglini, P. Lang, Gi. Horowitz, J. Hwang, A. Kahn, C. Amato, P. Calas, Organic Electronics. 9, 419 (2008).

[58] K. Y. Wu, S. Y. Yu, Yu-Tai Tao, Langmuir. 25, 6232 (2009).
[59] J. Zou , C. Z. Li , C. Y. Chang , H. L. Yip , A. K. Y. Jen, Advanced Materials. 26, 3618 (2014).
[60] H. L. Yip, S. K. Hau, N. S. Baek, A. K. Y. Jen, Applied Physics Letters. 92, 193313 (2008).
[61] I. Lee, J. L. Lee, Journal of Photonics for Energy. 5, 507609 (2015).
[62] A. J. Ben-Sasson, Senate of the Technion – Israel Institute of Technology. 5774, 189 (2013).
[63] H. W. Zan, Y. H. Hsu, H. F. Meng, C. H. Huang, Y. T. Tao, W. W. Tsai, Applied Physics Letters. 101, 093307 (2012).
[64] K. Hong, J. L. Leez, Electrochemical and Solid-State Letters. 11, H29 (2008).
[65] M. Schnippering, M. Carrara, A. Foelske, R. Ko¨tzc, D. J. Fermı´n, Physical Chemistry Chemical Physics. 9, 725 (2007).
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2017-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明