博碩士論文 104226039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:13.58.252.8
姓名 張若柔(Ruoh-Rou Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 基於PQ:PMMA VBG回饋半導體雷射之 FMCW雷射雷達測距系統研究
(Development of the FMCW LiDAR system based on a diode laser feedback with PQ:PMMA VBG)
相關論文
★ 以體積全像布拉格光柵為反射鏡之單縱模波長可調式V型共振腔鈦藍寶石固態雷射研究★ 以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究
★ 已體積布拉格光柵為可調反射率輸出雷射鏡研究★ 以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究
★ 利用楔形稜鏡與繞射光柵設計非光線追跡薄型太陽能集光器★ 以體積布拉格光柵為共振腔反射鏡之有效腔長研究
★ 穩態紅外線LED封裝熱阻量測★ 以體積布拉格光柵作為雷射共振腔內反射鏡之縱向模態研究
★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究★ 以體積布拉格光柵作為雷射共振腔反射鏡之橫模行為研究
★ 鎖相熱影像檢測法用以檢測材料內部缺陷★ 光聲影像顯微術之研究
★ 光激發額外載子於太陽能電池內空間分佈之二維軸對稱與二維線對稱物理參數模擬★ 基於純量繞射理論以遠場聲場重建光聲影像之研究
★ 基於光聲訊號之三維資訊重建★ 以動態模型分析PQ:PMMA作為體積布拉格光柵之繞射效率研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究提出使用自製PQ:PMMA VBG作為半導體雷射外部共振腔反射鏡,達成頻率調制連續波(FMCW)雷射雷達系統。首先,將自製感光高分子光學壓克力PQ:PMMA以532 nm綠光雷射進行曝光後,將PQ:PMMA材料製作成反射式體積布拉格光柵(VBG),回饋1064 nm半導體雷射後,達成單縱模雷射輸出。再將自製PQ:PMMA VBG固定於壓電制動元件(PZT)上,以訊號產生器供給電壓調制PZT產生長度變化,調控半導體雷射外部共振腔的腔長,以此調變此單縱模半導體雷射之輸出波長,達到FMCW雷射發射端架構。本研究之距離量測是以類似麥克森干涉儀的架構,量測兩道反射光相干涉產生的拍頻(Beat Frequency)訊號來計算距離。本研究之FMCW LiDAR系統最適宜量測距離約為五至九公尺,而系統量測之距離標準差約在十公分內。
摘要(英) An external cavity diode laser(ECDL) feedback with a homemade PQ:PMMA VBG is served as the tunable laser of a FMCW LiDAR system.
Photopolymer material PQ:PMMA is exposed by a 532 nm laser using two-beam interference scheme to achieve a volume Bragg grating(VBG). The VBG is used to feedback a 1064 nm diode laser to reach single longitudinal mode laser output. The VBG is attached to a PZT controlled by a function generator to modulate the length of the external cavity, and thus made a FMCW laser source. The FMCW range finding system is similar to a Michelson interferometer. Two reflected beam will interfere on the sensor plane. The beat frequency is measured and the object distance can be calculated. In this thesis, the optimum measurement distance of our FMCW LiDAR system is approximately 5 m to 9 m, while the standard deviation of the system measurement is within approximately 10 cm.
關鍵字(中) ★ 體積布拉格光柵
★ 外腔半導體雷射
★ 頻率調製連續波
★ 雷射雷達
關鍵字(英) ★ Volume Bragg Grating
★ External Cavity Diode Laser
★ Frequency Modulated Continuous Wave
★ LiDAR
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 研究動機 4
第二章 基本原理 7
2-1 拍頻(Beat frequency) 7
2-2 頻率調制連續波(Frequency-Modulated Continuous Wave, FMCW)雷達原理 9
2-3 體積布拉格光柵(Volume Bragg Grating, VBG) 11
2-4 同調長度(Coherence Length) 13
2-5 雷射外部共振腔(External cavity) 15
2-6 FMCW雷射光源 17
2-7 FMCW測距系統基礎架構 18
第三章 FMCW LiDAR測距系統計算與模擬 20
3-1 FMCW LiDAR測距系統簡介 20
3-2 FMCW LiDAR測距系統計算與模擬 23
3-2-1 電場疊加 23
3-2-2 以電腦軟體模擬實驗訊號 26
3-2-3 FMCW雷射調變頻寬Δf、待測距離D、調變頻率fm與量測拍頻fB之關係 28
3-2-4 實驗參數選擇 32
3-2-5 頻率響應(Frequency Response)對於調變頻寬Δf的影響.......... 33
3-2-6 資料處理(Data processing) 35
第四章 FMCW LiDAR實驗架構與數據分析 37
4-1 FMCW調頻雷射系統 37
4-1-1 調頻雷射之頻率可調變範圍 40
4-1-2 頻率響應的修正 41
4-2 FMCW雷射雷達測距系統 43
4-3 調制頻率fm對不同距離量測 44
4-4 FMCW LiDAR實驗量測結果與分析 45
4-4-1 訊號量測及分析 45
4-4-2 訊雜比(Signal-to-Noise Ratio) 47
4-4-3 理論與實際實驗結果比較 50
第五章 結論與未來展望 52
5-1 結論 52
5-2 未來展望 53
第六章 參考文獻 55
第七章 附錄 59
PQ:PMMA 體積布拉格光柵 59
7-1 雙光束干涉(Two beam interference) 59
7-2 雙光束干涉曝光實驗架構 62
7-3 雙光束干涉曝光實驗樣品量測 64
參考文獻 [1] 向敬成, 雷達系統. 五南出版社, 2004, p. 524.
[2] C. P. A. Mohan, and T. Poggio, "Example-Based Object Detection in Images by Components," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, pp. 349-361, 2001.
[3] E. S. B. Leibe, and B. Schiele, "Pedestrian Detection in Crowded Scenes," IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, p. 878—885, 2005.
[4] W.-H. Lo, "Realization of High Accuracy FMCW Level Gauge," M.S. thesis, Mechanical Engineering, National Chiao Tung University, 2009.
[5] G. S. M. I. Thorsten Luettel, Michael Himmelsbach, and Hans-Joachim Wuensche, "Autonomous Ground Vehicles - Concepts and a Path to the Future," Proceedings of the IEEE vol. 100, pp. 1831-1839, May 13th 2012.
[6] Y. Lin, "Mini-UAV-Borne LIDAR for Fine-Scale Mapping," IEEE Geoscience and Remote Sensing Letters, vol. 8, pp. 426-430, 2011.
[7] J.-F. Lalonde, "Terrain characterization and classification with a mobile robot," Journal of Field Robotics, vol. 23, p. 839, 2006.
[8] M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla¨, and M. Rioux, "Laser ranging: a critical review of usual techniques for distance measurement," Optical Engineering, vol. 40, no. 1, 2000.
[9] J. M. Risto Myllylädag, Juha Kostamovaaradag, Antti Mäntyniemidag and Gerd-Joachim Ulbrich, "Imaging distance measurements using TOF lidar Mesures " Journal of Optics, vol. 29, pp. 188-193, 1998.
[10] M. L. G.Percheta, T.Boschb, "Error analysis of phase-shift laser range finder with high-level signal," Sensors and Actuators A: Physical, vol. 62, no. 1-3, pp. 534-538, 1997.
[11] J. Zheng, "Optical frequency-modulated continuous-wave interferometers," Applied Optics, vol. 45, no. 12, pp. 2723-2730, 20 April 2006.
[12] T. H. Koichiro Nakamura, Masato Yoshida, Toshiharu Miyahara, and Hiromasa Ito, "Optical Frequency Domain Ranging by a Frequency-Shifted Feedback Laser," IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 36, pp. 308-309, 2000.
[13] J. E. A. R. D. Massaroa, J. D. Nelsona, J. D. Edwards, "A COMPARATIVE STUDY BETWEEN FREQUENCY-MODULATED CONTINUOUS WAVE LADAR AND LINEAR MODE LIDAR," The International Archives of the Photogrammetry, vol. XL-1, no. Remote Sensing and Spatial Information Sciences, pp. 233-239, 17 – 20 November 2014.
[14] S. Yiou, F. Balembois, P. Georges, and J.-P. Huignard, "Improvement of the spatial beam quality of laser sources with an intracavity Bragg grating," Optics Letters, vol. 28, no. 4, pp. 242-244, 02/15 2003.
[15] B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Optics Letters, vol. 29, no. 16, pp. 1891-1893, 08/13 2004.
[16] T. McComb, V. Sudesh, and M. Richardson, "Volume Bragg grating stabilized spectrally narrow Tm fiber laser," Optics Letters, vol. 33, no. 8, pp. 881-883, 04/15 2008.
[17] F. Delorme, S. Slempkes, P. Gambini, and M. Puleo, "Fast tunable 1.5 μm distributed Bragg reflector laser for optical switching applications," Electronics Letters, vol. 29, no. 1, pp. 41-43Available: http://digital-library.theiet.org/content/journals/10.1049/el_19930027
[18] D. Wandt, M. Laschek, A. Tünnermann, and H. Welling, "Continuously tunable external-cavity diode laser with a double-grating arrangement," Optics Letters, vol. 22, no. 6, pp. 390-392, 03/15 1997.
[19] D. Nordin, "Optical frequency modulated continuous wave (FMCW) range and velocity measurements," Docroral Thesis Docroral Thesis, Department of Computer Science and Electrical Engineering, Lulea University of Technology, 2004.
[20] K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, and W. T. Whang, "Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage," Optical Engineering, vol. 42, no. 5, pp. 1390-1396, 2003.
[21] V. Reddy. (2015). Death of Pulsed LiDAR: Gieger Mode LiDAR vs FMCW LADAR. Available: https://www.linkedin.com/pulse/death-pulsed-lidar-gieger-mode-vs-fmcw-ladar-vasanth-reddy
[22] B. C. a. I. P. Giles, "Frequency Modulated Heterodyne Optical Fiber Sagnac Interferometer," IEEE Transactions on Microwave Theory and Techniques, vol. 30, no. 4, pp. 536 - 539, Apr. 1982.
[23] A. D. M.-C. Amann, "Frequency-modulated continuous-wave (FMCW) lidar with tunable twin-guide laser diode," in SPIE′s 1994 International Symposium on Optics, Imaging, and Instrumentation, 1994, vol. 2271, p. 9: SPIE.
[24] D. Pierrottet, F. Amzajerdian, L. Petway, B. Barnes, G. Lockard, and M. Rubio, "Linear FMCW laser radar for precision range and vector velocity measurements," MRS Online Proceedings Library Archive, vol. 1076, 2008.
[25] F. M. Müller, G. Böttger, C. Janeczka, N. Arndt-Staufenbiel, H. Schröder, and M. Schneider-Ramelow, "Frequency-modulated laser ranging sensor with closed-loop control," in SPIE OPTO, 2018, vol. 10539, p. 6: SPIE.
[26] G. B. Fabian M. Müller , Christian Janeczka , Norbert Arndt-Staufenbiel , Henning Schröder , Martin Schneider-Ramelow "Frequency-modulated laser ranging sensor with closed-loop control," SPIE OPTO, vol. 10539, no. Photonic Instrumentation Engineering V, 22 February 2018.
[27] 詹偉平, "以錐形半導體放大器為增益介質、外腔VBG回饋半體雷射研究," 國立中央大學, 2010.
[28] 陳傳文, "以PQ:PMMA製作反射式體積布拉格光柵回饋錐形半導體放大器之窄波長雷射輸出研究," 國立中央大學, 2016.
[29] O. M. Efimov, L. B. Glebov, and V. I. Smirnov, "High-frequency Bragg gratings in a photothermorefractive glass," Optics Letters, vol. 25, no. 23, pp. 1693-1695, 12/01 2000.
[30] O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, "High-efficiency Bragg gratings in photothermorefractive glass," Applied Optics, vol. 38, no. 4, pp. 619-627, 02/01 1999.
[31] G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," 2005, vol. 5711, pp. 166-176.
[32] P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, "High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection," Optics Express, vol. 16, no. 13, pp. 9507-9512, 06/23 2008.
[33] 朱士維. (2012). Laser resonator. Available: http://www.lasertech.tw/laser_noun.php?g_id=IyQlKiYlMjYlXiQqJio=
[34] E. Hecht, Optics. Reading, Mass.: Addison-Wesley, 2002.
[35] Y.-N. Hsiao, W.-T. Whang, and S. H. Lin, "Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials," Optical Engineering, vol. 43, no. 9, pp. 1993-2002, 2004.
[36] S. Liu et al., "Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material," Journal of the Optical Society of America B, vol. 28, no. 11, pp. 2833-2843, 11/01 2011.
指導教授 鍾德元(Te-yuan Chung) 審核日期 2018-5-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明