博碩士論文 104226044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.216.79.60
姓名 陳威年(Wei-Nien Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 添加溶劑對於鈣鈦礦薄膜太陽能電池表現之影響
(Influence of the solvent additives on the photovoltaic peroformance of organometal lead perovskite based solar cells)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著綠能意識抬頭,太陽能的應用成為重要的課題之一,因此太陽能電池的光電轉換效率成為眾所矚目的焦點。近年來,以鈣鈦礦(Perovskite)薄膜太陽能電池的功率轉換效率(power conversion efficiency, PCE)之突破最為迅速,深具發展潛力。
本論文研究的太陽能電池之元件架構為: Ag/PC61BM/CH3NH3PbI3/PEDOT:PSS/ITO/glass。Ag與ITO (氧化銦錫)分別為陰極與陽極; [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM )與Poly(3-hexylthiophene-2,5-diyl) (PEDOT:PSS)分別是電子傳輸層(electron transport layer, ETL)與電洞傳輸層(hole transport layer, HTL); CH3NH3PbI3則是鈣鈦礦結構吸光層。以ITO/glass作為基板,旋塗上PEDOT:PSS、CH3NH3PbI3、PC61BM各層薄膜,最後熱蒸鍍Ag作為陰電極,完成元件製作。經優化製程參數後,得到的最佳元件表現為:最高功率轉換效率達到13.35% ; 短路電流(short-circuit current density, JSC )達22.9 1mA/cm2 ; 開路電壓(open-circuit voltage, VOC )達 0.95 V;填充因子(fill factor, FF)達61.55 %。
摘要(英) The research and the development of solar cells have achieved more attention with the consciousness of greenergy economy is gradually risen in the global.Recently, the power convertion efficiency of Perovskite solar cell is improved rapidly, containing potential of development.
In this thesis, the structure of the Perovskite solar cells is silver/PC61BM/CH3NH3PbI3/PEDOT:PSS/ITO/glass. Silver and ITO are the cathode and anode. PCBM and PEDOT:PSS are the electron transport and hole transport layers. CH3NH3PbI3 is the Perovskite absorber. PEDOT:PSS, CH3NH3PbI3 and PC61BM layers were coated on the ITO glass substrate by using spin coater sequentially. Finally, a silver layer was coated on the top of PCBM thin film by thermal evaporation deposition to form the device. After the optimized process, the best power convertion efficiency of the device could achieve 13.35%. The short-circuit current density, the open-circuit voltage, and the fill factor achived 22.91 mA/cm2, 0.95 V, and 61.55%.
關鍵字(中) ★ 鈣鈦礦太陽能電池 關鍵字(英) ★ perovskite
論文目次 第一章 緒論 1
1.1 前言 1
1.2 太陽能電池歷史與種類簡介 3
1.2.1 無機太陽能電池 4
1.2.2 有機太陽能電池 (OPV) 5
1.2.3 染料敏化太陽能電池 (Dye Sensitized Solar Cell,DSSC) 8
1.3 研究動機 10
1.4 本文架構 12
第二章 鈣鈦礦材料基礎理論與發展 13
2.1 鈣鈦礦結構源起: 13
2.2 敏化太陽電池結構之鈣鈦礦元件 ( Sensitized Solar Cell Structure for Perovskite devices) 14
2.3 平面異質介面鈣鈦礦太陽能電池 ( Planar heterojunction perovskite solar cells ) 16
2.4 影響鈣鈦礦薄膜之因素 17
2.5薄膜鈣鈦礦太陽能電池工作原理 20
第三章 實驗方法 22
3.1實驗藥品與儀器 22
3.1.1實驗藥品 22
3.1.2太陽光模擬器(Solar Simulator , YSS-50A) 24
3.1.3光激發螢光光譜儀(Photoluminescence,PL,UniRAM)、拉曼散射光譜儀(Raman scattering spectrometer, UniRAM)、時間解析之螢光光譜儀( Time-resolved photoluminescence spectrometer) 25
3.1.4紫外光/可見光光譜儀(UV/VIS Spectrophotometer , Hitachi U-4100) 27
3.1.5原子力顯微鏡(Atomic Force Microscope,AFM, SEIKO E-sweep System) 28
3.1.6熱蒸鍍鍍膜系統(thermal evaporation deposition) 29
3.2 藥品合成與溶液調配 30
3.2.1 甲基胺碘藥品合成 30
3.2.2溶液調配 31
3.3 鈣鈦礦薄膜太陽能電池製作流程 32
3.3.1 清洗ITO pattern 基板 34
3.3.2 UV Ozone cleaner 34
3.3.3旋塗PEDOT:PSS層 34
3.3.4旋塗鈣鈦礦層與熱退火處理 35
3.3.5 旋塗PC61BM層及靜置處理 36
3.3.6 刮除對電極 36
3.3.7 蒸鍍銀電極 36
第四章 鈣鈦礦薄膜太陽能電池製作結果之量測分析 37
4.1鈣鈦礦薄膜太陽能電池優化文獻回顧與改善動機 39
4.2利用DMF溶劑蒸氣增加鈣鈦礦晶粒大小 40
4.3 延長電子傳輸層(PC61BM)靜置時間降低激子再復合機率 43
4.4 使用不同沸點反溶劑對鈣鈦礦晶粒大小與膜平整度影響 46
4.5 調整電洞傳輸層的功函數 52
4.6最佳參數選擇 63
4.7最佳製程參數之太陽能電池量測 64
4.8長時間穩定度測試 65
第五章 結論 66
參考文獻 68
參考文獻 [1] 張品全, "太陽電池," 科學發展, vol. 349, 2月 2002.
[2] L. L. Kazmerski, "Best Reaserch-Cell Efficiencies," NERL, 3/9 2016.
[3] L. Peck, "Solar history: Alexandre Edmond Becquerellar," Solar Energy World Solar Panels, 2011.
[4] A. Chodos, "This Month in Physics History April 25, 1954: Bell Labs Demonstrates the First Practical Silicon Solar Cell," APS Physics, 2009.
[5] Y. H. Kuang, M. Di Vece, J. K. Rath, L. van Dijk, and R. E. I. Schropp, "Elongated nanostructures for radial junction solar cells," Reports on Progress in Physics, vol. 76, p. 29, Oct 2013.
[6] B. O’regan and M. Grfitzeli, "A low-cost, high-efficiency solar cell based on dye-sensitized," nature, vol. 353, pp. 737-740, 1991.
[7] R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, and H. Katayama, "Improvement of the conversion efficiency of a monolithic type dyesensitized solar cell module," in Technical Digest of the 21st International Photovoltaic Science and Engineering Conference, 2C-5O-08, Fukuoka, Japan, 2011.
[8] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Gratzel, "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency," Energy & Environmental Science, vol. 9, pp. 1989-1997, 2016.
[9] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, pp. 6050-6051, 2009.
[10] G. F. L. M.W. Davidson, "Photomicrography in the geological sciences.," Journal of Geological Education, vol. 39, pp. 403-422, 1991.
[11] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, "Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3," Science, vol. 342, pp. 344-347, 2013.
[12] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura, "Comparative study on the excitons in lead-halide-based perovskite-type crystals CH 3 NH 3 PbBr 3 CH 3 NH 3 PbI 3," Solid state communications, vol. 127, pp. 619-623, 2003.
[13] C.-C. Chen, S. H. Chang, L.-C. Chen, F.-S. Kao, H.-M. Cheng, S.-C. Yeh, C.-T. Chen, W.-T. Wu, Z.-L. Tseng, and C. L. Chuang, "Improving the efficiency of inverted mixed-organic-cation perovskite absorber based photovoltaics by tailing the surface roughness of PEDOT: PSS thin film," Solar Energy, vol. 134, pp. 445-451, 2016.
[14] S. H. Chang, H.-M. Cheng, S.-H. Chen, and K.-F. Lin, "Optical, Excitonic, and Electronic Properties of CH3NH3PbI3 Thin Films and Their Application in Photovoltaics," 2016.
[15] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, pp. 4088-4093, 2011.
[16] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J. E. Moser, "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific reports, vol. 2, 2012.
[17] J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, "Low-temperature processed meso-superstructured to thin-film perovskite solar cells," Energy & Environmental Science, vol. 6, pp. 1739-1743, 2013.
[18] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, "Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells," Nano letters, vol. 13, pp. 1764-1769, 2013.
[19] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, pp. 316-319, 2013.
[20] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, "Interface engineering of highly efficient perovskite solar cells," Science, vol. 345, pp. 542-546, 2014.
[21] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, "Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells," Nature nanotechnology, vol. 9, pp. 927-932, 2014.
[22] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, pp. 395-398, 2013.
[23] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, "Planar heterojunction perovskite solar cells via vapor-assisted solution process," Journal of the American Chemical Society, vol. 136, pp. 622-625, 2013.
[24] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, "CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells," Advanced Materials, vol. 25, pp. 3727-3732, 2013.
[25] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, and M. A. Alam, "High-efficiency solution-processed perovskite solar cells with millimeter-scale grains," Science, vol. 347, pp. 522-525, 2015.
[26] H.-S. Kim, S. H. Im, and N.-G. Park, "Organolead halide perovskite: New horizons in solar cell research," The Journal of Physical Chemistry C, vol. 118, pp. 5615-5625, 2014.
[27] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature materials, vol. 13, pp. 897-903, 2014.
[28] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray‐Weale, U. Bach, Y. B. Cheng, and L. Spiccia, "A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells," Angewandte Chemie, vol. 126, pp. 10056-10061, 2014.
[29] F. Huang, Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, and Y. Zhou, "Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells," Nano Energy, vol. 10, pp. 10-18, 2014.
[30] W.-J. Yin, T. Shi, and Y. Yan, "Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber," Applied Physics Letters, vol. 104, p. 063903, 2014.
[31] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde, and A. Walsh, "Atomistic origins of high-performance in hybrid halide perovskite solar cells," Nano letters, vol. 14, pp. 2584-2590, 2014.
[32] D. Liu and T. L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques," Nature photonics, vol. 8, pp. 133-138, 2014.
[33] M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, and N. Mathews, "Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells," Chemical Communications, vol. 49, pp. 11089-11091, 2013.
[34] K.-F. Lin, S. H. Chang, K.-H. Wang, H.-M. Cheng, K. Y. Chiu, K.-M. Lee, S.-H. Chen, and C.-G. Wu, "Unraveling the high performance of tri-iodide perovskite absorber based photovoltaics with a non-polar solvent washing treatment," Solar Energy Materials and Solar Cells, vol. 141, pp. 309-314, 2015.
[35] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, "Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement," Advanced Materials, vol. 26, pp. 6503-6509, 2014.
[36] S. H. Chang, K.-F. Lin, K. Y. Chiu, C.-L. Tsai, H.-M. Cheng, S.-C. Yeh, W.-T. Wu, W.-N. Chen, C.-T. Chen, and S.-H. Chen, "Improving the efficiency of CH 3 NH 3 PbI 3 based photovoltaics by tuning the work function of the PEDOT: PSS hole transport layer," Solar Energy, vol. 122, pp. 892-899, 2015.
[37] D. Alemu, H.-Y. Wei, K.-C. Ho, and C.-W. Chu, "Highly conductive PEDOT: PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells," Energy & environmental science, vol. 5, pp. 9662-9671, 2012.
[38] J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, and J. Shinar, "On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment," Polymer, vol. 45, pp. 8443-8450, 2004.
[39] M. Lee, D. Lee, N. Jung, M. Yun, C. Yim, and S. Jeon, "Evaporation of water droplets from hydrophobic and hydrophilic nanoporous microcantilevers," Applied Physics Letters, vol. 98, p. 013107, 2011.
[40] J. Zhao, S. Jiang, Q. Wang, X. Liu, X. Ji, and B. Jiang, "Effects of molecular weight, solvent and substrate on the dewetting morphology of polystyrene films," Applied surface science, vol. 236, pp. 131-140, 2004.
指導教授 陳昇暉、張勝雄(Sheng-Hui Chen Sheng Hsiung Chang) 審核日期 2016-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明